

POOL ENGINEERING DOTT, ING. VIRGILIO M. CHIONO

STUDIO DI INGEGNERIA GEOM. ANDREA ZANUSSO

Progettazione civile e impiantistica - Architettura - Consulenza - Certificazioni - Formazione - Qualità - Sicurezza - Ambiente

Vicolo Cugiano nº 4 - 10090 San Giorgio C.se - (To) - Italy tel 0124 450 535 - fax 0124 450 839 - info@poolsa.eu

Regione Piemonte Città Metropolitana di Torino Comune di Mazzè

		Comune di	Mazze	\		
Titolo progetto	Progetto di Sostituzione Controsoffitto Salone Polivalente Mazzè					
Localizzazione				Strada Pro	vinciale per Mazzè	
Fase progettuale					Valutazione	
Titolo documento	F				delle Strutture one Palaeventi	
Committenza		Comune o P.za della Repu 10035 Mo	bblica 2		Per validazione	
Professionisti		N CE STATE	ELLA AROL ott. Ing. sillio Mario CHIONO 8645 F	WON DE	A SCALLING OF SOLUTION OF SOLU	
Revisioni	Rev. n°	Data 19/11/2019	Rel	Descr	Emissione definitiva	
	Rev. n°					
	Rev. n°					
	Rev. n°					
Documento	Scala Cod. commod Cod. documents	mento	n.a. 190209 - 02.0	Pool Engineering S.A. P. IVA 08926970016 Pool Engineering S.n.c. P. IVA 09266390013 Mod. 730_03 Rev 04 2		

Documento	Relazione tecnica	Pagina		2 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020	
Referenti		Revisione		
File	RT 02.0 Relazione Analisi Resistenza al Fuoco			

Documento	Relazione tecnica	Pagina		3 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020	
Referenti		Revisione		
File	RT 02.0 Relazione Analisi Resistenza al Fuoco			

SOMMARIO

Sommario	
Protocollo di distribuzione del documento	4
1 Premessa	5
1.1 Resistenza al Fuoco	5
2 Inquadramento Normativo e Requisiti Richiesti	7
2.1 Determinazione del Carico d'Incendio	7
3 Metodi di Indagine e Valutazione Resistenza al Fuoco	9
4 Risultati dell'Indagine	9
4.1 Pilastri	9
4.2 Travi	
4.3 Tegoli	32
5 Determinazione dei Tempi di Evacuazione	53
6 Conclusioni	54

Documento	Relazione tecnica	Pagina	4 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

PROTOCOLLO DI DISTRIBUZIONE DEL DOCUMENTO

Si informano i Signori Committenti che i dati personali sono trattati dallo Studio e dai titolari ai sensi dell'art.13 del D.Lgs. 196 del 30 giugno 2003 e s.mm.ii.. Il conferimento dei dati richiesti è necessario e l'eventuale rifiuto all'utilizzo comporta l'impossibilità di svolgere le attività per la conclusione e per l'esecuzione del contratto. In relazione al trattamento dei dati il fornitore, in base all'art. 7 del citato D.Lgs. 196/2003, ha il diritto di ottenere, senza ritardo a cura dello Studio Pool Engineering, l'aggiornamento, la trasformazione, il blocco o la cancellazione dei dati. I dati personali verranno trattati dallo studio per le necessità progettuali e comunicati a consulenti e liberi professionisti per necessità strettamente legate alla commessa e al commercialista per questioni contabili.

Con la accettazione del presente documento il committente autorizza esplicitamente lo Studio al trattamento dei dati personali in conformità alle prescrizioni legislative e a quanto sopra riportato.

Quanto contenuto nel presente fascicolo è considerato prodotto intellettuale coperto da segreto professionale di proprietà dello Studio Pool Engineering. Quanto contenuto non può essere copiato o divulgato con qualsiasi mezzo da parte di terzi non espressamente autorizzati.

La distribuzione di questo documento è soggetta al controllo di qualità così come da SGQ dello studio associato. Per approvazione da parte del Responsabile Sistema Qualità è firmato sulla prima di copertina.

Committente

Comune di Mazzè

Sede Legale

P.zza della Repubblica 2 - 10035 Mazzè (To)

Localizzazione commessa oggetto del documento

Strada Provinciale per Mazzè

Referenti

Distribuzione

Data emissione	Data restituzione
19/11/2019	(non previsto)
Ns. rif. n°	Copia
190209	1

Modello

Mod. 730 03 Rev 03 2013-02

File(s)

H:\Studio Ingegneria\Progetti\Archivio\Pubblico\Comune-Mazzè_248_Prog-Civile_Controsoffitto-Palaeventi_190209_2019-8\40 Ammin\RT 01.0 Relazione Analisi Resistenza Al Fuoco.Doc

Commenti / Annotazioni

Documento	Relazione tecnica	Pagina		5 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020	
Referenti		Revisione		
File	RT 02.0 Relazione Analisi Resistenza al Fuoco			

1 Premessa

La presente relazione accompagna il progetto definitivo relativo ai "Lavori di installazione nuovo controsoffitto della struttura prefabbricata denominato palaeventi", sito in Strada Provinciale Mazzè - Tonengo nel comune di Mazzè (TO).

Il presente documento ha il compito di illustrare le analisi ed i calcoli effettuati al fine di definire la Resistenza al Fuoco della struttura portante ed individuare così il miglior intervento di adeguamento della struttura anche dal punto di vista della sicurezza e della prevenzione incendi.

In particolare è oggetto di analisi la sola struttura che accoglie il salone polivalente principale.

1.1 Resistenza al Fuoco

La Resistenza al fuoco è una delle misure antincendio di protezione da perseguire per garantire un adeguato livello di sicurezza di un'opera da costruzione in condizioni di incendio. Essa riguarda la capacità portante in caso di incendio, per una struttura, per una parte della struttura o per un elemento strutturale nonché la capacità di compartimentazione in caso di incendio per gli elementi di separazione strutturali e non strutturali.

La Resistenza al Fuoco si distingue nelle seguenti prestazioni:

Documento	Relazione tecnica	Pagina	6 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

Simbolo	Prestazione	Descrizione
R	Capacità portante	Capacità di un elemento strutturale di portare i carichi presenti in condizioni di incendio normalizzato, per un certo periodo di tempo
E	Tenuta	Capacità di un elemento costruttivo o strutturale di impedire il passaggio di fumi e gas caldi per un certo periodo di tempo, in condizioni di incendio normalizzate
E	Isolamento	Capacità di un elemento costruttivo o strutturale di impedire il passaggio calore di un incendio normalizzato per un certo periodo di tempo. A seconda dei limiti più o meno severi al trasferimento di calore, il requisito si specializza in I1 o I2. L'assenza di indicazione al pedice sottintende il requisito I2.
W	Irraggiamento	Capacità di un elemento costruttivo o strutturale di limitare, per un certo periodo di tempo, l'irraggiamento termico da parte della superficie non esposta in condizioni di incendio normalizzate.
М	Azione meccanica	Capacità di un elemento costruttivo o strutturale di resistere all'impatto da parte di altri elementi senza perdere i requisiti di resistenza al fuoco.
С	Dispositivo automatico di chiusura	Capacità di chiusura di un varco da parte di un elemento costruttivo in condizioni normalizzate di incendio e di sollecitazione meccanica.
S	Tenuta di fumo	Capacità di un elemento di chiusura di limitare o ridurre il passaggio di gas o fumi freddi in condizioni di prova normalizzate. Il requisito si specializza in: • S _a : se la tenuta al passaggio dei gas o fumi è garantita a temperatura ambiente; • S _m (o S200): se la tenuta al passaggio dei gas o fumi è garantita sia a temperatura ambiente che a 200°C.
P o PH	Continuità di corrente o capacità di segnalazione	Capacità di funzionamento di un cavo percorso da corrente o da segnale ottico in condizioni di incendio normalizzate
G	Resistenza all'incendio della fuliggine	Capacità di condotto di passaggio di fumi di resistere all'incendio di fuliggine in condizioni di incendio normalizzate, garantendo la tenuta al passaggio di gas caldi e l'isolamento termico.
К	Capacità di protezione al fuoco	Capacità di rivestimenti a parete o a soffitto di proteggere i materiali o gli elementi costruttivi o strutturali su cui sono installati dalla carbonizzazione, dall'accensione o da altro tipo di danneggiamento, per un certo periodo di tempo in condizioni di incendio normalizzate.
D	Durata della stabilità a temperatura costante	Capacità delle barriere al fumo di conservare i requisiti di resistenza al fuoco in condizioni di incendio normalizzate.
DH	Durata della stabilità lungo la curva standard tempo- temperatura	
F	Funzionalità degli evacuatori motorizzati di fumo e calore	Capacità degli evacuatori di fumo motorizzati (F) o naturali (B) di conservare i requisiti di funzionamento in condizioni di incendio
В	Funzionalità degli evacuatori naturali di fumo e calore	normalizzate.

Tabella S.2-12: Simboli

Nel caso specifico ci siamo occupati della verifica della capacità di un elemento strutturale di portare i carichi presenti in condizioni di incendio normalizzato, per un certo periodo di tempo R. La verifica si è concentrata su quegli elementi strutturali portanti del Salone principale, oggetto di adeguamento, ovvero sui pilastri (struttura portante verticale), sui travi (struttura portante orizzontale) e sui tegoli di copertura (elemento strutturale secondario).

POOL ENGINEERING

Documento	Relazione tecnica	Pagina	7 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

2 INQUADRAMENTO NORMATIVO E REQUISITI RICHIESTI

L'attività che viene condotta all'interno della struttura in esame si identifica ai sensi del DPR 151/11 quale attività 65.2.C, ovvero "Locali di spettacolo e di trattenimento in genere, impianti e centri sportivi, palestre, sia a carattere pubblico che privato, con capienza superiore a 200 persone ovvero di superficie lorda in pianta al chiuso superiore a 200 mq". Trattasi infatti di salone polivalente in cui vengono organizzati eventi e manifestazioni di diverse tipologie, dalle serate danzanti a conferenze con posti a sedere, di superficie pari a circa 775 mq.

La norma che regola tale attività è il D.M. 19 agosto 1996 "Approvazione della regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio dei locali di intrattenimento e di pubblico spettacolo" e successive modifiche (vedi DM 6 marzo 2001 e DM 18 dicembre 2012).

Il D.M. di cui sopra prescrive al capitolo 2.3, per le nuove attività, che i requisiti di resistenza al fuoco degli elementi strutturali vadano valutati secondo le prescrizioni e le modalità di prova stabilite dalla circolare del Ministero dell'interno n. 91 del 14 settembre 1961 e successivi (D.M. 16.02.2007 e D.M. 09.03.2007), prescindendo dal tipo di materiale impiegato nella realizzazione degli elementi medesimi (calcestruzzo, laterizi, acciaio, legno massiccio, legno lamellare, elementi compositi, etc.). Il dimensionamento degli spessori e delle protezioni da adottare per i vari tipi di materiali suddetti, nonché la classificazione degli edifici in funzione del carico d'incendio, vanno determinati con le tabelle e con le modalità specificate nella citata circolare n. 91/61, ovvero sulla base del carico d'incendio presente. Si prescrive poi un valore minimo pari a REI60 per quelle strutture inserite in edifici pluriplano aventi un'altezza antincendio non superiore a 12m (ma questo in particolare esclude il caso specifico in esame).

La struttura in oggetto venne adibita a tale attività prima dell'entrata in vigore del D.M. 19 agosto 1996, tuttavia al fine di garantire una maggiore tutela dei fruitori del fabbricato, si è deciso di verificare la capacità portante della struttura secondo i requisiti attualmente in vigore per le strutture di nuova realizzazione. Si è provveduto quindi ad effettuare un calcolo del Carico d'Incendio del salone polivalente.

2.1 Determinazione del Carico d'Incendio

Si definisce carico di incendio il potenziale termico netto della totalità dei materiali combustibili contenuti in uno spazio corretto in base ai parametri indicativi della partecipazione alla combustione dei singoli materiali. il carico di incendio è espresso in MJ; convenzionalmente 1 MJ è assunto pari a 0,054(3) chilogrammi di legna equivalente.

Il carico d'Incendio del caso in oggetto è stato determinato attraverso il software di calcolo Claraf 2.0 (ai sensi D.M. 09.03.2007) considerando il materiale presente all'interno del locale.

	Arredo	Valore PerPezzo	QtaArredo	Materiale In Deposito	ValorePerM3	QtaMerce	Imballo
•		0	0	Carta	10000	1	1
	Banco di magazzi	1005	50		0	0	0
	Sedia non imbottita	67	550		0	0	0
	Tende (per metro	23	20		0	0	0
	Tavolo grande	590	20		0	0	0
	1	0	0	Elettrodomestici	200	1	1

Documento	Relazione tecnica	Pagina	8 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

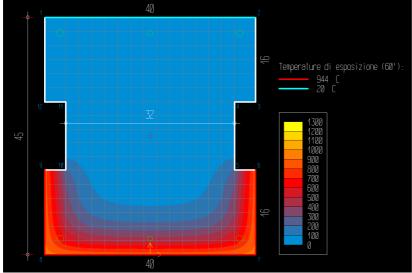
Classificazione di resistenza al fuoco delle costruzioni decreto del Ministero dell'Interno 9 marzo 2007				
Progetto: Salone Polivalente Mazzè				
Valore orientativo del car	rico d'incendio spe			erci in deposi
	9 f,d = 9 f • 0	q1 · δq2 · δ n [M]	//m²]	
Carico d'incendio spe	<u>ecifico</u>			
Allegato elenco arredo e/o aggiunti alla sommatoria	merci in deposito *		q f = 141	,0 [MJ/m²
Area compartimento	775	[m²]		
Fattore di rischio in rel	azione alla dimen	sione del comparti	<u>imento</u>	
Superficie	da 500 a 1000	[m²]	δ_{q1} =	1,20
Fattore di rischio in rel	azione al tipo di a	ttività svolta		
Classe di rischio	di probabilità di innesco,	so rischio di incendio in term velocità di propagazione di rollo dell'incendio da parte de	elle 🔾 😁 =	0,80
Fattore di protezione Sistemi automatici di estin.	tions ad seque		δ _{n1} =	
	•	_	$\delta_{n2} =$	
Sistemi automatici di estin.	_		$\delta_{n3} =$	
Sistemi di evacuazione au			- 110	0.85
Sistemi automatici di rilevazione, segnalazione e allarme di incendio $\delta_{n4} = 0.85$ Squadra aziendale dedicata alla lotta antincendio $\delta_{n5} =$			0,03	
Squadra aziendale dedica			δ_{n6} =	
Rete idrica antincendio inte				
Rete idrica antincendio inte	erna e esterna		δ _{n7} =	•
Percorsi protetti di accessi	0		δn8 =	
Accessibilità ai mezzi di so	occorso VV.F.		δ_{n9} =	0,90
Strutture in legno				
Area della supericie espos	ta 0	[m²]	$q_f = 0$	[MJ/m
Velocità di carbonizzazione	0,00	[mm/min]		
q _{f,d} = 141,0	0 • 1,2 •	0,8 • 0,55	= 74,45	[MJ/m
Classe di riferim	ento per il livello d	di prestazione III	=	0
Classe minima n	er il livello di pres	tazione III	=	0
Ciasse IIIIIIIII p	or it itselfo di pres	COZIONE III		U

Sulla base del Carico d'Incendio non sono richiesti requisiti specifici R per la struttura portante.

Documento	Relazione tecnica	Pagina	9 di 5
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

3 METODI DI INDAGINE E VALUTAZIONE RESISTENZA AL FUOCO

La valutazione di resistenza al fuoco è stata condotta mediante:


- Indagine della struttura (verifica dello spessore del copriferro degli elementi e rilievo metrico delle dimensioni degli elementi strutturali);
- Analisi degli elaborati progettuali raccolti dall'amministrazione e della relazione prodotta dall'ing. Samuele Ferrocchio in riferimento al progetto di consolidamento strutturale in caso di sisma;
- Analisi della bibliografia e delle normative di settore;
- Dimensionamento e Verifica mediante software di simulazione dell'azione di un incendio sulle strutture "Dolmen";

4 RISULTATI DELL'INDAGINE

4.1 Pilastri

Si è provveduto alla verifica dell'elemento pilastro (totale n°20). L'elemento presente una dimensione pari a 45x40cm per un'altezza > 4,5m e pertanto non è possibile utilizzare il metodo tabellare per la definizione della Resistenza della struttura.

4.1.1 Relazione di Calcolo

Temperature di esposizione a 60'

Tipo verifica: s.l.u. secondo Eurocodici + NTC08

Unità di misura (se non specificate): N, mm, N/mm², deformazioni: %

Materiali

Materiali Meccanici

Cls C25/30

Materiale: Cls C25/30. Normativa: Eurocodici + NTC08 - EN 1992-1-2 gen 1998.

La seguente tabella riassume le caratteristiche meccaniche.

f_{ck} [N/mm ²]	25
e _{c2} [%]	0.2
e _{cu2} [%]	0.35
n	2

La seguente tabella riassume le proprietà meccaniche per la verifica "a freddo".

Documento	Relazione tecnica	Pagina	10 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

g c	1.5
acc	0.85
f _{cd} [N/mm ²]	14.17
e _{c2} [%]	0.2
e _{cu2} [%]	0.35
n	2

La seguente tabella riassume le proprietà meccaniche per la verifica "a caldo".

acc	1
g c	1
aggregato	siliceo
kc	ENV 1992-1-2 gen 1998 3.2
f _{cd,q=20°} [N/mm ²	²] 25

Barre B450C

Materiale: Barre B450C. Normativa: Eurocodici + NTC08 - EN 1992-1-2 gen 1998. La seguente tabella riassume le caratteristiche meccaniche.

fyk [N/mm²]	450
E [N/mm ²]	206000
ramo	inclinato limitato
k	1.2
eud [%]	6.75

La seguente tabella riassume le proprietà meccaniche per la verifica "a freddo".

g s	1.15
f _{yd} [N/mm²]	391.3
e _y [%]	0.0019

La seguente tabella riassume le proprietà meccaniche per la verifica "a caldo".

g s	1
k _s	ENV 1992-1-2 gen 1998 3.3 - defo.>2%
f _{yd,q=20°} [N/mm ²]	450

Materiali Termici

P_CLSSiliceoEC2_1998

Materiale: P_CLSSiliceoEC2_1998. Calcestruzzo ad aggregato siliceo, secondo EC2 Parte 1-2 (Gennaio 1998). Le curve di calore specifico, conduttività termica e densità volumica sono tratte dalla norma UNI ENV 1992-1-2 01/1998 A.3.1. Si è considerata un'umidità in massa del 2%. La densità volumica è stata mantenuta costante oltre i 100°C.

Sezione

Descrizione: Sez. 1 - a I Tipo sezione: a I

Aree distribuite

La sezione contiene in tutto 245 elementi. L'area totale di questi elementi vale 169600. mm². Il baricentro si trova nel punto (0. ;225.).

Gli elementi con caratteristiche strutturali sono 245. L'area totale di questi elementi vale 169600. mm². Il loro baricentro si trova nel punto (0. ;225.).

- Contorno 1 Tipo contorno: a I

Materiale meccanico: Cls C25/30

Materiale termico: P_CLSSiliceoEC2_1998

Questo contorno contiene 245 elementi. L'area totale di questi elementi vale 169600. mm². Il baricentro si trova nel punto (0. ;225.).

	(-	
Vertice n.	Z [mm] Y [mm]
1	-200.	450.
2	200.	450.
3	200.	290.
4	160.	290.
5	160.	160.

POOL ENGINEERING St. As: P.IVA 08926970016

Documento	Relazione tecnica	Pagina	11 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

6	200.	160.
	200.	0.
8	-200.	0.
9	-200.	160.
10	-160.	160.
11	-160.	290.
12	-200.	290.
13	-200.	450.
Area [mm ²]	169600.	

Aree concentrate

Vertice n	.Z [mm]	Y [mm]	d [mm]	Area [mm²]	Materiale
1	170.	420.	14.	154.	Barre B450C
2	-170.	420.	14.	154.	Barre B450C
3	170.	30.	14.	154.	Barre B450C
4	-170.	30.	14.	154.	Barre B450C
5	0.	420.	10.	79.	Barre B450C
6	0.	30.	10.	79.	Barre B450C

Analisi termica

Tempo di esposizione: 60 min.

Tipi di esposizione								
Nome	Curva tempo-temperatura	Isolante	er	es.ac[V	V/m² °K] f	gno	gn,r	
Fuoco	Fuoco	nessuno	0. .5	6 25.	1	.1.	1.	
Fuoco esterno	Fuoco esterno	nessuno	05	6 25.	1	.1.	1.	
Fuoco idrocarburi	Fuoco idrocarburi	nessuno	0. .5	6 50.	1	.1.	1.	
Aria 20°	Aria 20°	nessuno	05	6 9.	1	.1.	1.	
Vuoti interni	Vuoti interni	nessuno	0. .5	6 9.	1	.1.	1.	

Zone di esposizione							
Tipo	Cont. n.	Vert. n.	dl [mm]	d2 [mm]			
Aria 20°	1	1	0.	0.			
Fuoco	1	6	0.	0.			
Fuoco	1	7	0.	0.			
Fuoco	1	8	0.	0.			

Analisi meccanica a freddo

Sforzi normali applicati nel punto (0.; 225.) (baricentro elementi strutturali)

Convenzioni: N + trazione; M_z + fib.inferiori tese; M_y + fib.sinistra tese; T_y + verso il basso; deformazione: $e = I + m_z y + m_y z$ [%].

Sollecitazione 1

Descrizione: Caso 1.1-A71-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = -261.77$ kN; $Mz_d = 0$. kN*m; $My_d = -.05$ kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): $| = .01; m_z = 0.; m_y = 0.$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

	Aree concentrate (ferri, cavi)						
Area. n.	e [%]	s [N/mm²]	Materiale				
1	01	-21.5	Barre B450C				
2	011	-21.7	Barre B450C				
3	01	-21.5	Barre B450C				
4	011	-21.7	Barre B450C				
5	01	-21.6	Barre B450C				
6	01	-21.6	Barre B450C				

Contorni (materiali strutturali della sezione)

Documento	Relazione tecnica	Pagina		12 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020	
Referenti		Revisione		
File	RT 02.0 Relazione Analisi Resistenza al Fuoco			

Cont.	e elas	tiche		S					
n.	[%]	mz[%/cm]	m _y [%/cm]	min [N/r	nm²]	coord	max	$[N/mm^2]$	coord
1	0105	0.	0.	-1.45		-200.; 450.	-1.44		200.; 0.

Sollecitazione 2

Descrizione: Caso 1.1-A72-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = -261.77$ kN; $Mz_d = 0$. kN*m; $My_d = .05$ kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): |= .01; $m_z = 0.$; $m_y = 0.$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)						
Area. n.	e [%]	s [N/mm²]	Materiale			
1	011	-21.7	Barre B450C			
2	01	-21.5	Barre B450C			
3	011	-21.7	Barre B450C			
4	01	-21.5	Barre B450C			
5	01	-21.6	Barre B450C			
6	01	-21.6	Barre B450C			

Contorni (materiali strutturali della sezione)							
Cont	e elas	tiche		s			
n.	1[%]	m _z [%/cm]	m _y [%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	0105	0.	0.	-1.45	200.; 450.	-1.44	-200.; 0.

Verifica a pressoflessione soddisfatta.

Sollecitazione 3

Descrizione: Cond.1-A71-P9

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: N_d = -149.6 kN; Mz_d = 0. kN*m; My_d = 0. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): |z| = 0.06; $m_z = 0.0$; $m_z = 0.0$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)						
Area. n.	e [%]	s [N/mm²]	Materiale			
1	006	-12.2	Barre B450C			
2	006	-12.2	Barre B450C			
3	006	-12.2	Barre B450C			
4	006	-12.2	Barre B450C			
5	006	-12.2	Barre B450C			
6	006	-12.2	Barre B450C			

Contorni (materiali strutturali della sezione)							
Cont.	e elas	tiche		s			
n.	[%]	mz[%/cm]	my[%/cm]	min [N/mm²] coord	max [N/mm²]	coord
1	0059	0.	0.	83	-200.; 0.	83	-135.; 450.

Verifica a pressoflessione soddisfatta.

Analisi meccanica a caldo

Tempo di esposizione: 60 min.

Sforzi normali applicati nel punto (0.; 225.) (baricentro elementi strutturali)

Convenzioni: N + trazione; M_z + fib.inferiori tese; M_y + fib.sinistra tese; T_y + verso il basso; deformazione: $e = I + m_z y + m_y z$ [%].

Sollecitazione 1

Descrizione: Caso 1.1-A71-P1

Documento	Relazione tecnica	Pagina		13 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020	
Referenti		Revisione		
File	RT 02.0 Relazione Analisi Resistenza al Fuoco			

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: N_d = -261.77 kN; Mz_d = 0. kN*m; My_d = -.05 kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): |z| = 0.009; $m_z = 0.0009$; $m_y = 0..$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)						
Area. n.	e [%]	s [N/mm²]	Materiale			
1	005	-10.7	Barre B450C			
2	005	-10.8	Barre B450C			
3	009	-3.4	Barre B450C			
	009	-3.4	Barre B450C			
5	005	-10.8	Barre B450C			
6	009	-14.5	Barre B450C			

Contorni (materiali strutturali della sezione)							
Cont.	e elas	tiche		s			
n.	1[%]	mz[%/cm]	my[%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	0089	.00009	0.	-1.99	-12.; 80.	0.	-200.; 0.

Verifica a pressoflessione soddisfatta.

Sollecitazione 2

Descrizione: Caso 1.1-A72-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = -261.77$ kN; $Mz_d = 0$. kN*m; $My_d = .05$ kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): |z| = 0.009; $m_z = 0.0009$; $m_y = 0.0009$;

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)				
Area. n.	e [%]	s [N/mm²]	Materiale	
1	005	-10.8	Barre B450C	
2	005	-10.7	Barre B450C	
3	009	-3.4	Barre B450C	
4	009	-3.4	Barre B450C	
5	005	-10.8	Barre B450C	
6	009	-14.5	Barre B450C	

Cont	Contorni (materiali strutturali della sezione)						
Cont	e elas	tiche		S			
n.	1[%]	m _z [%/cm]	m _y [%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	0089	.00009	0.	-1.99	12.; 80.	0.	-200.; 0.

Verifica a pressoflessione soddisfatta.

Sollecitazione 3

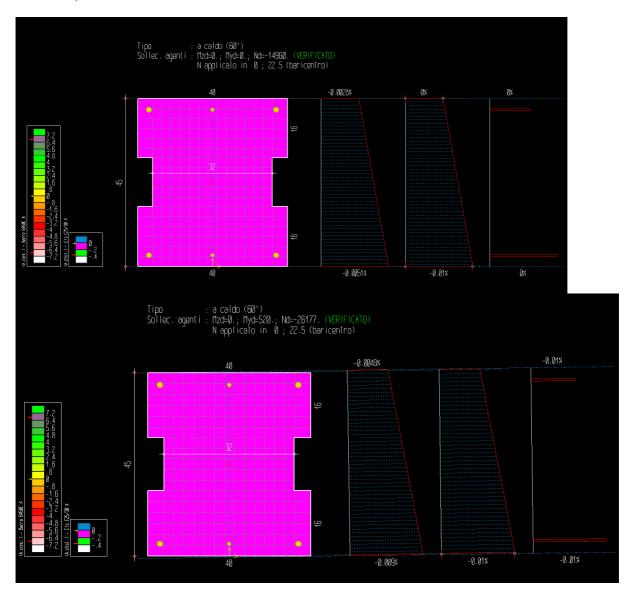
Descrizione: Cond.1-A71-P9

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = -149.6$ kN; $Mz_d = 0$. kN*m; $My_d = 0$. kN*m.

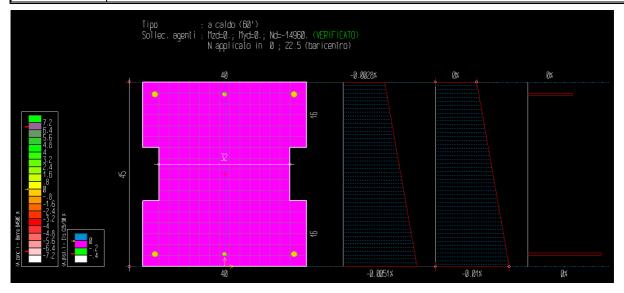
Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): |z| = 0.005; $m_z = 0.0005$; $m_y = 0..$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (terri, cavi)				
Area. n.	e [%]	s [N/mm²]	Materiale	
1	003	-6.1	Barre B450C	
2	003	-6.1	Barre B450C	
3	005	-1.9	Barre B450C	
4	005	-1.9	Barre B450C	



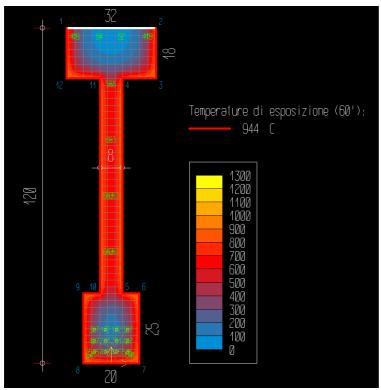
POOL ENGINEERING St. As: P.IVA 08926970016


Documento	Relazione tecnica	Pagina	14 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

5	003 -6.1	Barre B450C
6	005 -8.2	Barre B450C

Contorni (materiali strutturali della sezione)							
Cont. e elastiche			S				
n.	[%]	mz[%/cm]	m _y [%/cm]	min [N/mm ²]	coord	max [N/mm²]	coord
1	0051	.00005	0.	-1.14	-12.; 80.	0.	-200.; 0.

Documento	Relazione tecnica	Pagina	15 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		


Il pilastro è in grado di garantire una Resistenza al Fuoco di almeno 60 minuti.

Documento	Relazione tecnica	Pagina	16 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

4.2 Travi

Si è provveduto alla verifica dell'elemento trave (totale n°7). L'elemento presenta larghezza massima pari a 32cm con un'altezza variabile da un minimo di 87cm ad un massimo di 120cm. Ha una lunghezza pari a circa 22m, copre infatti l'intera larghezza del salone. L'elemento ha la funzione di "portare" i tegoli di copertura.

4.2.1 Relazione di Calcolo

Temperature di esposizione a 60'

Tipo verifica: s.l.u. secondo Eurocodici + NTC08

. Unità di misura (se non specificate): N, mm, N/mm², deformazioni: %

Materiali

Materiali Meccanici

Cls C25/30

Materiale: Cls C25/30. Normativa: Eurocodici + NTC08 - EN 1992-1-2 gen 1998.

La seguente tabella riassume le caratteristiche meccaniche.

f _{ck} [N/mm²]	25
ec2 [%]	0.2
e _{cu2} [%]	0.35
n	2

La seguente tabella riassume le proprietà meccaniche per la verifica "a freddo".

g c	1.5
acc	0.85
f_{cd} [N/mm 2]	14.17
ec2 [%]	0.2
ecu2 [%]	0.35
n	2

La seguente tabella riassume le proprietà meccaniche per la verifica "a caldo".

acc	1
g c	1

Vicolo Cugiano, 4 - 10090 San Giorgio Can.se (To)

Documento	Relazione tecnica	Pagina	17 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

aggregato	silice	O				
kc	ENV	1992-1-2	gen	1998	3.	.2
f _{cd,q=20°} [N/mm ²]	25					

Barre B450C

Materiale: Barre B450C. Normativa: Eurocodici + NTC08 - EN 1992-1-2 gen 1998.

La seguente tabella riassume le caratteristiche meccaniche.

fyk [N/mm²]	450
E [N/mm ²]	206000
ramo	inclinato limitato
k	1.2
eud [%]	6.75

La seguente tabella riassume le proprietà meccaniche per la verifica "a freddo".

g s	1.15
f _{yd} [N/mm ²]	391.3
e _v [%]	0.0019

La seguente tabella riassume le proprietà meccaniche per la verifica "a caldo".

g s	1
k _s	ENV 1992-1-2 gen 1998 3.3 - defo.>2%
f _{yd,q=20°} [N/mm ²]	450

Trefoli

Materiale: Trefoli. Normativa: Eurocodici + NTC08 - EN 1992-1-2 gen 1998.

La seguente tabella riassume le caratteristiche meccaniche.

f _{p0.01k} [N/mm ²]	1720
f _{pk} [N/mm ²]	1860
E [N/mm ²]	195000
ramo	inclinato limitato
e _{ud} [%]	3.15

La seguente tabella riassume le proprietà meccaniche per la verifica "a freddo".

g s	1.15
f _{p0.01d} [N/mm ²]	1495.65
f _{pd} [N/mm ²]	1617.39
e _v [%]	0.00767

La seguente tabella riassume le proprietà meccaniche per la verifica "a caldo".

g s	1			
kp	ENV	1992-1-2 gen	1998	3.3
f _{pd,q=20°} [N/mm ²]	1860			

Materiali Termici

P_CLSSiliceoEC2_1998

Materiale: P_CLSSiliceoEC2_1998. Calcestruzzo ad aggregato siliceo, secondo EC2 Parte 1-2 (Gennaio 1998). Le curve di calore specifico, conduttività termica e densità volumica sono tratte dalla norma UNI ENV 1992-1-2 01/1998 A.3.1. Si è considerata un'umidità in massa del 2%. La densità volumica è stata mantenuta costante oltre i 100°C.

Sezione

Descrizione: Sez. 1 - a l Tipo sezione: a l

Aree distribuite

La sezione contiene in tutto 243 elementi. L'area totale di questi elementi vale 169200. mm². Il baricentro si trova nel punto (0.;646.).

Gli elementi con caratteristiche strutturali sono 243. L'area totale di questi elementi vale 169200. mm². Il loro baricentro si trova nel punto (0. ;646.).

- Contorno 1

Tipo contorno: a I

Materiale meccanico: Cls C25/30

Materiale termico: P_CLSSiliceoEC2_1998

POOL ENGINEERING St. AS: P.IVA 08926970016

Documento	Relazione tecnica	Pagina	18 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

Questo contorno contiene 243 elementi. L'area totale di questi elementi vale 169200. mm². Il baricentro si trova nel punto (0. ;646.).

	(, , .				
Vertice n.	Z [mm]	Y [mm]				
1	-160.	1200.				
2	160.	1200.				
3	160.	1020.				
4	40.	1020.				
5	40.	250.				
6	100.	250.				
7	100.	0.				
8	-100.	0.				
9	-100.	250.				
10	-40.	250.				
11	-40.	1020.				
12	-160.	1020.				
13	-160.	1200.				
Area [mm²] 169200.						

Aree concentrate

Aree concerniale						
Z [mm]	Y [mm]	d [mm]	Area [mm²]	Materiale		
130.	1170.	18.	254.	Barre B450C		
-130.	1170.	18.	254.	Barre B450C		
38.	1170.	10.	79.	Barre B450C		
-41.	1170.	10.	79.	Barre B450C		
70.	30.	10.	79.	Barre B450C		
-70.	30.	10.	79.	Barre B450C		
60.	40.	12.	118.	Trefoli		
20.	40.	12.	118.	Trefoli		
-20.	40.	12.	118.	Trefoli		
-60.	40.	12.	118.	Trefoli		
60.	80.	12.	118.	Trefoli		
20.	80.	12.	118.	Trefoli		
-20.	80.	12.	118.	Trefoli		
-60.	80.	12.	118.	Trefoli		
60.	120.	12.	118.	Trefoli		
20.	120.	12.	118.	Trefoli		
-20.	120.	12.	118.	Trefoli		
-60.	120.	12.	118.	Trefoli		
0.	800.	8.	50.	Barre B450C		
0.	1000.	8.	50.	Barre B450C		
10.	400.	8.	50.	Barre B450C		
-10.	400.	8.	50.	Barre B450C		
-10.	600.	8.	50.	Barre B450C		
10.	600.	8.	50.	Barre B450C		
	Z [mm] 130130. 3841. 7070. 60. 202060. 60. 202060. 60. 1010.	Z [mm] Y [mm] 130. 1170. -130. 1170. 38. 1170. -41. 1170. 70. 30. 60. 40. 20. 40. -60. 40. 60. 80. 20. 80. -60. 80. 60. 120. 20. 120. -20. 120. -60. 120. 0. 800. 0. 1000. 10. 400. -10. 400. -10. 600.	Z [mm] Y [mm] d [mm] 130. 1170. 18. -130. 1170. 10. -41. 1170. 10. -70. 30. 10. 60. 40. 12. 20. 40. 12. -20. 40. 12. 60. 80. 12. 20. 80. 12. -20. 80. 12. -60. 80. 12. -60. 120. 12. -60. 120. 12. -60. 120. 12. -60. 120. 12. -60. 120. 12. -60. 120. 12. -60. 120. 12. -60. 120. 12. -60. 80. 8. 0. 1000. 8. 10. 400. 8. -10. 600. 8.	Z [mm] Y [mm] d [mm] Area [mm²] 130. 1170. 18. 254. -130. 1170. 18. 254. 38. 1170. 10. 79. -41. 1170. 10. 79. 70. 30. 10. 79. 60. 40. 12. 118. 20. 40. 12. 118. -20. 40. 12. 118. 60. 80. 12. 118. 60. 80. 12. 118. 20. 80. 12. 118. 60. 80. 12. 118. 60. 120. 12. 118. 60. 120. 12. 118. 60. 120. 12. 118. 60. 120. 12. 118. 60. 120. 12. 118. 60. 120. 12. 118. 60. 120. 12. 118		

Analisi termica

Tempo di esposizione: 60 min.

Tipi di esposizione						
Nome	Curva tempo-temperatura	Isolante	eres.	ac[W/m² °K]	f gno	gn,r
Fuoco	Fuoco	nessuno)56	25.	1.1.	1.
Fuoco esterno	Fuoco esterno	nessuno)56	25.	1.1.	1.
Fuoco idrocarbur	Fuoco idrocarburi	nessuno)56	50.	1.1.	1.
Aria 20°	Aria 20°	nessuno)56	9.	1.1.	1.
Vuoti interni	Vuoti interni	nessuno)56	9.	1.1.	1.

Zone di esposizione						
Tipo	Cont. n.	Vert. n.	d1	[mm]	d2	[mm]
Fuoco	1	2	0.		0.	

Documento	Relazione tecnica	Pagina	19 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

Fuoco	1	3	0.	0.
Fuoco	1	4	0.	0.
Fuoco	1	5	0.	0.
Fuoco	1	6	0.	0.
Fuoco	1	7	0.	0.
Fuoco	1	8	0.	0.
Fuoco	1	9	0.	0.
Fuoco	1	10	0.	0.
Fuoco	1	11	0.	0.
Fuoco	1	12	0.	0.

Analisi meccanica a freddo

Sforzi normali applicati nel punto (0.; 646.) (baricentro elementi strutturali)

Convenzioni: N + trazione; M_z + fib.inferiori tese; M_y + fib.sinistra tese; T_y + verso il basso; deformazione: $e = I + m_z y + m_y z$ [%].

Sollecitazione 1

Descrizione: Cond.1-A86-P9

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 3.31$ kN; $Mz_d = 687.31$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .231; $m_z = .00276$; $m_y = .00001$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

1								
Aree concentrate (ferri, cavi)								
Area. n.	e [%]	s [N/mm²]	Materiale					
1	092	-189.6	Barre B450C					
2	092	-189.3	Barre B450C					
3	092	-189.5	Barre B450C					
4	092	-189.4	Barre B450C					
5	.223	391.7	Barre B450C					
6	.223	391.7	Barre B450C					
7	.22	428.6	Trefoli					
8	.22	428.7	Trefoli					
9	.22	428.7	Trefoli					
10	.22	428.8	Trefoli					
11	.209	407.1	Trefoli					
12	.209	407.1	Trefoli					
13	.209	407.2	Trefoli					
14	.209	407.2	Trefoli					
15	.198	385.6	Trefoli					
16	.198	385.6	Trefoli					
17	.198	385.7	Trefoli					
18	.198	385.7	Trefoli					
19	.01	20.9	Barre B450C					
20	045	-92.8	Barre B450C					
21	.12	248.2	Barre B450C					
22	.121	248.2	Barre B450C					
23	.065	134.6	Barre B450C					
24	.065	134.5	Barre B450C					

Contorni (materiali strutturali della sezione)							
Cont. e elastiche s							
n.	[%]	mz[%/cm]	m _y [%/cm]	min [N/mm	²] coord	max [N/mm²]	coord
1	.2309	00276	00001	-10.65	160.; 1200.	0.	-100.; 0.

Verifica a pressoflessione soddisfatta.

Sollecitazione 2

Documento	Relazione tecnica	Pagina	20 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

Descrizione: Caso 1.1-A85-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 5.39$ kN; $Mz_d = 1127.04$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .4; $m_z = .00495$; $m_y = .00002$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

(1011), cavij. i ci ciascori porilo ai cal							
Aree concentrate (ferri, cavi)							
Area. n.	e [%]	s [N/mm²]	Materiale				
1	18	-370.2	Barre B450C				
2	179	-369.2	Barre B450C				
3	18	-369.9	Barre B450C				
4	179	-369.6	Barre B450C				
5	.385	393.6	Barre B450C				
6	.385	393.6	Barre B450C				
7	.38	740.8	Trefoli				
8	.38	740.9	Trefoli				
9	.38	741.1	Trefoli				
10	.38	741.2	Trefoli				
11	.36	702.1	Trefoli				
12	.36	702.3	Trefoli				
13	.36	702.4	Trefoli				
14	.36	702.6	Trefoli				
15	.34	663.5	Trefoli				
16	.34	663.7	Trefoli				
17	.34	663.8	Trefoli				
18	.34	664.	Trefoli				
19	.004	7.6	Barre B450C				
20	095	-196.4	Barre B450C				
21	.202	391.4	Barre B450C				
22	.202	391.4	Barre B450C				
23	.103	211.7	Barre B450C				
24	.103	211.6	Barre B450C				

Contorni (materiali strutturali della sezione)									
Cont.e elastiche s									
n.	[%]	mz[%/cm]	m _y [%/cm]	min	[N/mm ²]	coord	max	[N/mm ²]	coord
1	.3998	00495	00002	-14.	16	160.; 1200.	0.		-100.; 0.

Verifica a pressoflessione soddisfatta.

Sollecitazione 3

Descrizione: Caso 1.1-A86-P9

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 5.33$ kN; $Mz_d = 1107.7$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .392; $m_z = .00484$; $m_y = .00002$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)							
Area. n.	Materiale						
1	175	-360.	Barre B450C				
2	174	-359.1	Barre B450C				
3	175	-359.7	Barre B450C				
4	174	-359.4	Barre B450C				
5	.377	393.5	Barre B450C				
6	.378	393.5	Barre B450C				
7	.373	726.4	Trefoli				

Pool Engineering St. Ass. P.IVA 08926970016

Documento	Relazione tecnica	Pagina	21 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

.373	726.6	Trefoli
.373	726.7	Trefoli
.373	726.8	Trefoli
.353	688.6	Trefoli
.353	688.8	Trefoli
.353	688.9	Trefoli
.353	689.1	Trefoli
.334	650.9	Trefoli
.334	651.	Trefoli
.334	651.1	Trefoli
.334	651.3	Trefoli
.005	9.5	Barre B450C
092	-190.	Barre B450C
.198	391.4	Barre B450C
.198	391.4	Barre B450C
.101	209.	Barre B450C
.101	209.	Barre B450C
	.373 .373 .353 .353 .353 .353 .334 .334 .334 .005 092 .198 .101	.373 726.7 .373 726.8 .353 688.6 .353 688.9 .353 689.1 .334 650.9 .334 651.1 .334 651.3 .005 9.5092 -190198 391.4 .198 391.4 .101 209.

Conto	Contorni (materiali strutturali della sezione)							
Cont. e elastiche s								
n.	1[%]	m _z [%/cm]	my[%/cm]	min [N/	mm²]	coord	max [N/mm²]	coord
1	.392	00484	00002	-14.13		160.; 1200.	0.	-100.; 0.

Sollecitazione 4

Descrizione: Cond.1-A83-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 3.31$ kN; $Mz_d = 687.31$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .231; $m_z = .00276$; $m_y = .00001$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

			·			
Aree concentrate (ferri, cavi)						
Area. n.	e [%]	s [N/mm²]	Materiale			
1	092	-189.6	Barre B450C			
2	092	-189.3	Barre B450C			
3	092	-189.5	Barre B450C			
4	092	-189.4	Barre B450C			
5	.223	391.7	Barre B450C			
6	.223	391.7	Barre B450C			
7	.22	428.6	Trefoli			
8	.22	428.7	Trefoli			
9	.22	428.7	Trefoli			
10	.22	428.8	Trefoli			
11	.209	407.1	Trefoli			
12	.209	407.1	Trefoli			
13	.209	407.2	Trefoli			
14	.209	407.2	Trefoli			
15	.198	385.6	Trefoli			
16	.198	385.6	Trefoli			
17	.198	385.7	Trefoli			
18	.198	385.7	Trefoli			
19	.01	20.9	Barre B450C			
20	045	-92.8	Barre B450C			
21	.12	248.2	Barre B450C			
22	.121	248.2	Barre B450C			
23	.065	134.6	Barre B450C			

Documento	Relazione tecnica	Pagina	22 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

24	.06	5 134.5	Barre B4	150C				
Con	Contorni (materiali strutturali della sezione)							
Con	t.e ela:	stiche		s				
n.	1[%]	mz[%/cm]	my[%/cm]	min [N/mm ²]	coord	max [N/mm²]	coord	
1	.2309	00276	00001	-10.65	160.; 1200.	0.	-100.; 0.	

Sollecitazione 5

Descrizione: Cond.1-A86-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 3.31$ kN; $Mz_d = 699.15$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .235; $m_z = .00281$; $m_y = .00001$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree co	Aree concentrate (ferri, cavi)					
Area. n.	e [%]	s [N/mm²]	Materiale			
1	094	-193.6	Barre B450C			
2	094	-193.3	Barre B450C			
3	094	-193.5	Barre B450C			
4	094	-193.4	Barre B450C			
5	.227	391.7	Barre B450C			
6	.227	391.7	Barre B450C			
7	.224	436.8	Trefoli			
8	.224	436.9	Trefoli			
9	.224	436.9	Trefoli			
10	.224	437.	Trefoli			
11	.213	414.9	Trefoli			
12	.213	414.9	Trefoli			
13	.213	415.	Trefoli			
14	.213	415.	Trefoli			
15	.202	392.9	Trefoli			
16	.202	393.	Trefoli			
17	.202	393.	Trefoli			
18	.202	393.1	Trefoli			
19	.01	21.	Barre B450C			
20	046	-94.9	Barre B450C			
21	.123	252.9	Barre B450C			
22	.123	252.9	Barre B450C			
23	.066	137.	Barre B450C			
24	.066	136.9	Barre B450C			

Contorni (materiali strutturali della sezione)							
Cont. e elastiche			S				
n.	l[%]	mz[%/cm]	m _y [%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	.2353	00281	00001	-10.8	160.; 1200.	0.	-100.; 0.

Verifica a pressoflessione soddisfatta.

Sollecitazione 6

Descrizione: Caso 1.1-A84-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 5.39$ kN; $Mz_d = 1126.56$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .4; $m_z = .00495$; $m_y = .00002$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)

Documento	Relazione tecnica	Pagina	23 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

Area. n.	e [%]	s [N/mm²]	Materiale
1	18	-370.	Barre B450C
2	179	-369.	Barre B450C
3	179	-369.6	Barre B450C
4	179	-369.3	Barre B450C
5	.385	393.6	Barre B450C
6	.385	393.6	Barre B450C
7	.38	740.4	Trefoli
8	.38	740.6	Trefoli
9	.38	740.7	Trefoli
10	.38	740.8	Trefoli
11	.36	701.8	Trefoli
12	.36	702.	Trefoli
13	.36	702.1	Trefoli
14	.36	702.2	Trefoli
15	.34	663.2	Trefoli
16	.34	663.4	Trefoli
17	.34	663.5	Trefoli
18	.34	663.6	Trefoli
19	.004	7.7	Barre B450C
20	095	-196.2	Barre B450C
21	.202	391.4	Barre B450C
22	.202	391.4	Barre B450C
23	.103	211.6	Barre B450C
24	.103	211.5	Barre B450C

Contorni (materiali strutturali della sezione)								
Cont.e elastiche s								
n.	1[%]	mz[%/cm]	m _y [%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	.3996	00495	00002	-14.1	6	160.; 1200.	0.	-100.; 0.

Sollecitazione 7

Descrizione: Caso 1.1-A83-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: N_d = 5.33 kN; Mz_d = 1107.7 kN*m; My_d = 0. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .392; $m_z = .00484$; $m_y = .00002$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)					
Area. n.	e [%]	s [N/mm²]	Materiale		
1	175	-360.	Barre B450C		
2	174	-359.1	Barre B450C		
3	175	-359.7	Barre B450C		
4	174	-359.4	Barre B450C		
5	.377	393.5	Barre B450C		
6	.378	393.5	Barre B450C		
7	.373	726.4	Trefoli		
8	.373	726.6	Trefoli		
9	.373	726.7	Trefoli		
10	.373	726.8	Trefoli		
11	.353	688.6	Trefoli		
12	.353	688.8	Trefoli		
13	.353	688.9	Trefoli		
14	.353	689.1	Trefoli		
15	.334	650.9	Trefoli		

tel 0124 450 535 - fax 0124 450 839 - info@poolsa.eu

Documento	Relazione tecnica	Pagina	24 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

16	.334	651.	Trefoli
17	.334	651.1	Trefoli
18	.334	651.3	Trefoli
19	.005	9.5	Barre B450C
20	092	-190.	Barre B450C
21	.198	391.4	Barre B450C
22	.198	391.4	Barre B450C
23	.101	209.	Barre B450C
24	.101	209.	Barre B450C

Cont	Contorni (materiali strutturali della sezione)						
Cont. e elastiche s							
n.	1[%]	m _z [%/cm]	m _y [%/cm]	min [N/mm ²]	coord	max [N/mm²]	coord
1	.392	00484	00002	-14.13	160.; 1200.	0.	-100.; 0.

Analisi meccanica a caldo

Tempo di esposizione: 60 min.

Sforzi normali applicati nel punto (0.; 646.) (baricentro elementi strutturali)

Convenzioni: N + trazione; M_z + fib.inferiori tese; M_y + fib.sinistra tese; T_y + verso il basso; deformazione: $e = I + m_z y$ + m_yz [%].

Sollecitazione 1

Descrizione: Cond.1-A86-P9

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: Nd = 3.31 kN; Mzd = 687.31 kN*m; My_d = 0. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): I= .433; m_z = -.00443; m_y = -.00001.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

			·		
Aree concentrate (ferri, cavi)					
Area. n.		s [N/mm²]	Materiale		
1	085	-143.6	Barre B450C		
2	085	-143.4	Barre B450C		
3	085	-174.6	Barre B450C		
4	085	-174.5	Barre B450C		
5	.42	113.4	Barre B450C		
6	.42	113.4	Barre B450C		
7	.416	170.8	Trefoli		
8	.416	380.9	Trefoli		
9	.416	380.9	Trefoli		
10	.416	170.9	Trefoli		
11	.398	377.8	Trefoli		
12	.398	640.5	Trefoli		
13	.398	640.6	Trefoli		
14	.398	377.8	Trefoli		
15	.38	420.2	Trefoli		
16	.38	670.3	Trefoli		
17	.38	670.3	Trefoli		
18	.38	420.3	Trefoli		
19	.079	32.	Barre B450C		
20	009	-8.6	Barre B450C		
21	.256	88.5	Barre B450C		
22	.256	88.5	Barre B450C		
23	.168	67.8	Barre B450C		
24	.168	67.8	Barre B450C		

Contorni (materiali strutturali de	ella sezione)
Cont.e elastiche	S

Documento	Relazione tecnica	Pagina	25 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

n.	[%] m _z [%/cm]	m _y [%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	.433400443	00001	-18.51	70.; 1200.	0.	-100.; 0.

Sollecitazione 2

Descrizione: Caso 1.1-A85-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 5.39$ kN; $Mz_d = 1127.04$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .727; $m_z = .00759$; $m_y = .00002$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

110111, 00		or crascorr	porno ai cai	
Aree concentrate (ferri, cavi)				
Area. n.	e [%]	s [N/mm²]	Materiale	
1	161	-272.5	Barre B450C	
2	161	-271.8	Barre B450C	
3	161	-331.3	Barre B450C	
4	161	-331.	Barre B450C	
5	.704	114.4	Barre B450C	
6	.704	114.4	Barre B450C	
7	.697	286.3	Trefoli	
8	.697	638.3	Trefoli	
9	.697	638.3	Trefoli	
10	.697	286.4	Trefoli	
11	.666	632.5	Trefoli	
12	.666	1072.4	Trefoli	
13	.666	1072.5	Trefoli	
14	.666	632.6	Trefoli	
15	.636	702.7	Trefoli	
16	.636	1121.	Trefoli	
17	.636	1121.1	Trefoli	
18	.636	702.9	Trefoli	
19	.12	48.5	Barre B450C	
20	032	-28.7	Barre B450C	
21	.423	88.9	Barre B450C	
22	.424	88.9	Barre B450C	
23	.272	88.4	Barre B450C	
24	.272	88.4	Barre B450C	

Contorni (materiali strutturali della sezione)							
Cont.e elastiche							
n.	1[%]	mz[%/cm]	m _y [%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	.727	00759	00002	-24.83	70.; 1200.	0.	-100.; 0.

Verifica a pressoflessione soddisfatta.

Sollecitazione 3

Descrizione: Caso 1.1-A86-P9

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 5.33$ kN; $Mz_d = 1107.7$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .714; $m_z = .00744$; $m_y = .00001$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)				
Area. n. e [%] s [N/mm²] Materiale				
1	157	-265.5	Barre B450C	
2	156	-264.8	Barre B450C	

Documento	Relazione tecnica	Pagina	26 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

3	157	-322.7	Barre B450C
4	157	-322.5	Barre B450C
5	.691	114.3	Barre B450C
6	.692	114.3	Barre B450C
7	.684	281.2	Trefoli
8	.684	626.8	Trefoli
9	.684	626.9	Trefoli
10	.684	281.2	Trefoli
11	.654	621.2	Trefoli
12	.654	1053.2	Trefoli
13	.654	1053.3	Trefoli
14	.654	621.3	Trefoli
15	.625	690.2	Trefoli
16	.625	1101.	Trefoli
17	.625	1101.1	Trefoli
18	.625	690.4	Trefoli
19	.119	48.	Barre B450C
20	03	-27.2	Barre B450C
21	.416	88.9	Barre B450C
22	.416	88.9	Barre B450C
23	.268	88.4	Barre B450C
24	.267	88.4	Barre B450C
24	.20/	00.4	paire b450C

Contorni (materiali strutturali della sezione)							
Cont.	e ela	stiche		S			
n.	[[%]	mz[%/cm]	my[%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	.7139	00744	00001	-24.73	70.; 1200.	0.	-100.; 0.

Sollecitazione 4

Descrizione: Cond.1-A83-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 3.31$ kN; $Mz_d = 687.31$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .433; $m_z = .00443$; $m_y = .00001$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)					
Area. n.	e [%]	s [N/mm²]	Materiale		
1	085	-143.6	Barre B450C		
2	085	-143.4	Barre B450C		
3	085	-174.6	Barre B450C		
4	085	-174.5	Barre B450C		
5	.42	113.4	Barre B450C		
6	.42	113.4	Barre B450C		
7	.416	170.8	Trefoli		
8	.416	380.9	Trefoli		
9	.416	380.9	Trefoli		
10	.416	170.9	Trefoli		
11	.398	377.8	Trefoli		
12	.398	640.5	Trefoli		
13	.398	640.6	Trefoli		
14	.398	377.8	Trefoli		
15	.38	420.2	Trefoli		
16	.38	670.3	Trefoli		
17	.38	670.3	Trefoli		
18	.38	420.3	Trefoli		

tel 0124 450 535 - fax 0124 450 839 - info@poolsa.eu

Documento	Relazione tecnica	Pagina	27 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

19	.079	32.	Barre B450C
20	009	-8.6	Barre B450C
21	.256	88.5	Barre B450C
22	.256	88.5	Barre B450C
23	.168	67.8	Barre B450C
24	.168	67.8	Barre B450C

Conto	Contorni (materiali strutturali della sezione)							
Cont. e elastiche			S					
n.	[%]	mz[%/cm]	my[%/cm]	min [N/mm²]	coord	max [N/mm²]	coord	
1	.4334	00443	00001	-18.51	70.; 1200.	0.	-100.; 0.	

Sollecitazione 5

Descrizione: Cond.1-A86-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 3.31$ kN; $Mz_d = 699.15$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .441; $m_z = .00451$; $m_y = .00001$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

1 1 15						
Aree concentrate (ferri, cavi)						
Area. n.	e [%]	s [N/mm²]	Materiale			
1	087	-146.5	Barre B450C			
2	086	-146.3	Barre B450C			
3	087	-178.2	Barre B450C			
4	086	-178.1	Barre B450C			
5	.428	113.4	Barre B450C			
6	.428	113.4	Barre B450C			
7	.423	173.9	Trefoli			
8	.423	387.7	Trefoli			
9	.423	387.7	Trefoli			
10	.423	173.9	Trefoli			
11	.405	384.6	Trefoli			
12	.405	652.	Trefoli			
13	.405	652.1	Trefoli			
14	.405	384.6	Trefoli			
15	.387	427.7	Trefoli			
16	.387	682.3	Trefoli			
17	.387	682.4	Trefoli			
18	.387	427.8	Trefoli			
19	.08	32.5	Barre B450C			
20	01	-8.9	Barre B450C			
21	.261	88.5	Barre B450C			
22	.261	88.5	Barre B450C			
23	.171	68.9	Barre B450C			
24	.171	68.9	Barre B450C			

Contorni (materiali strutturali della sezione)							
Cont.e elastiche s							
n.	l[%]	mz[%/cm]	m _y [%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	.4412	00451	00001	-18.76	70.; 1200.	0.	-100.; 0.

Verifica a pressoflessione soddisfatta.

Sollecitazione 6

Descrizione: Caso 1.1-A84-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 5.39$ kN; $Mz_d = 1126.56$ kN*m; $My_d = 0$. kN*m.

Vicolo Cugiano, 4 - 10090 San Giorgio Can.se (To)

Documento	Relazione tecnica	Pagina	28 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .727; $m_z = .00758$; $m_y = .00002$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

		trate (ferri,					
Area. n.	e [%]	s [N/mm²]	Materiale				
1	161	-272.3	Barre B450C				
2	16	-271.6	Barre B450C				
3	161	-331.	Barre B450C				
4	161	-330.8	Barre B450C				
5	.704	114.4	Barre B450C				
6	.704	114.4	Barre B450C				
7	.696	286.2	Trefoli				
8	.696	638.	Trefoli				
9	.696	638.	Trefoli				
10	.696	286.3	Trefoli				
11	.666	632.2	Trefoli				
12	.666	1071.9	Trefoli				
13	.666	1072.	Trefoli				
14	.666	632.4	Trefoli				
15	.636	702.4	Trefoli				
16	.636	1120.5	Trefoli				
17	.636	1120.6	Trefoli				
18	.636	702.6	Trefoli				
19	.12	48.5	Barre B450C				
20	032	-28.7	Barre B450C				
21	.423	88.9	Barre B450C				
22	.423	88.9	Barre B450C				
23	.272	88.4	Barre B450C				
24	.272	88.4	Barre B450C				

Contorni (materiali strutturali della sezione)							
Cont. e elastiche			S				
n.	[1[%]	m _z [%/cm]	my[%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	.7267	00758	00002	-24.83	70.; 1200.	0.	-100.; 0.

Verifica a pressoflessione soddisfatta.

Sollecitazione 7

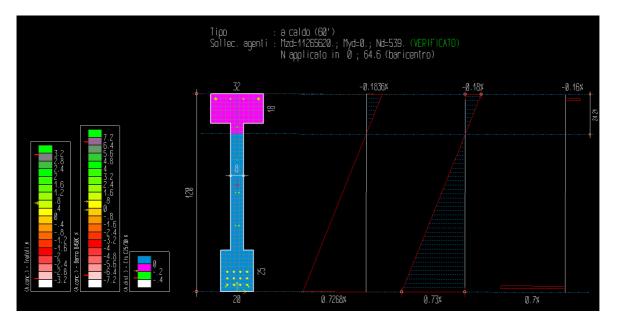
Descrizione: Caso 1.1-A83-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 5.33$ kN; $Mz_d = 1107.7$ kN*m; $My_d = 0$. kN*m.

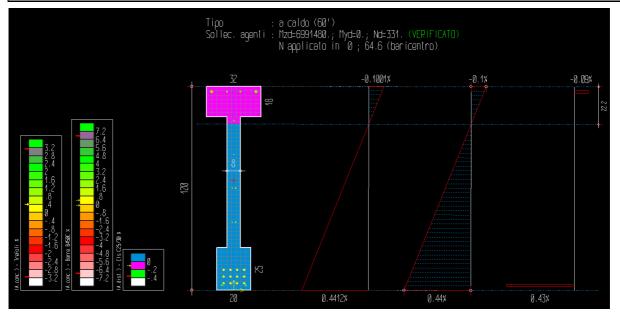
Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .714; $m_z = .00744$; $m_y = .00001$.

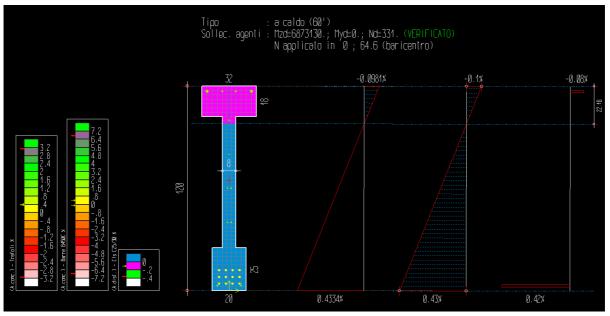
Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

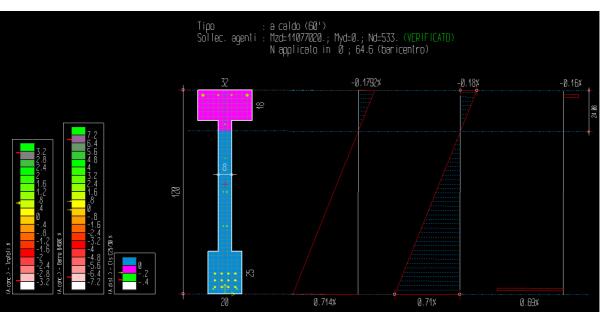
Aree concentrate (ferri, cavi)					
Area. n.	e [%]	s [N/mm²]	Materiale		
1	157	-265.5	Barre B450C		
2	156	-264.8	Barre B450C		
3	157	-322.7	Barre B450C		
4	157	-322.5	Barre B450C		
5	.691	114.3	Barre B450C		
6	.692	114.3	Barre B450C		
7	.684	281.2	Trefoli		
8	.684	626.8	Trefoli		
9	.684	626.9	Trefoli		



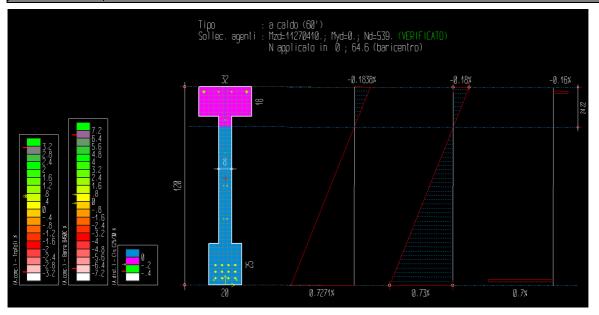
POOL ENGINEERING ST. ASS. P.IVA 08926970016

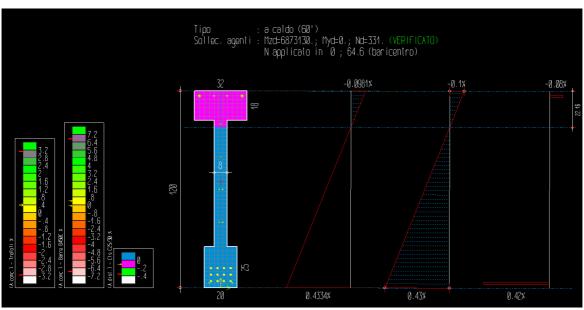

Documento	Relazione tecnica	Pagina	29 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

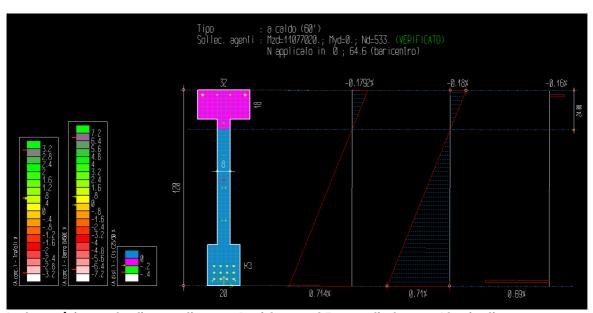

10	.684	281.2	Trefoli
11	.654	621.2	Trefoli
12	.654	1053.2	Trefoli
13	.654	1053.3	Trefoli
14	.654	621.3	Trefoli
15	.625	690.2	Trefoli
16	.625	1101.	Trefoli
17	.625	1101.1	Trefoli
18	.625	690.4	Trefoli
19	.119	48.	Barre B450C
20	03	-27.2	Barre B450C
21	.416	88.9	Barre B450C
22	.416	88.9	Barre B450C
23	.268	88.4	Barre B450C
24	.267	88.4	Barre B450C


Contorni (materiali strutturali della sezione)							
Cont.e elastiche				S			
n.	1[%]	mz[%/cm]	my[%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	.7139	00744	00001	-24.73	70.; 1200.	0.	-100.; 0.

Documento	Relazione tecnica	Pagina		30 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020	
Referenti		Revisione		
File	RT 02.0 Relazione Analisi Resistenza al Fuoco			







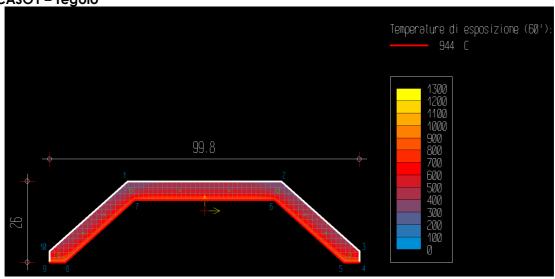
Documento	Relazione tecnica	Pagina	31 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

La trave è in grado di garantire una Resistenza al Fuoco di almeno 60 minuti.

Documento	Relazione tecnica	Pagina	32 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

4.3 Tegoli

Si è provveduto alla verifica dell'elemento tegolo. I tegoli si sviluppano tra due travi per una lunghezza di circa 6m ed una larghezza di 1m, con uno spessore di 6cm. Dalle indagini invasive si è provveduto ad identificare la presenza di un ferro Φ 12 ad una profondità di circa 2cm.


I tegoli vengono identificati quali elementi strutturali secondari che non partecipano alla stabilità dell'edificio e non sostengono altre strutture. Per tali strutture, come specificato nel D.M. 09.03.2007 e nella lettera Circolare prot. N° P902/4122 sott.55 del 20 luglio 2007, in quelle costruzioni che devono garantire il livello III di prestazione è consentito limitare il requisito di resistenza al fuoco alla classe 30, purché siano verificate tutte le seguenti condizioni:

- a) l'eventuale crollo degli elementi strutturali secondari non compromette la capacità portante di altre parti della struttura;
- b) l'eventuale crollo degli elementi strutturali secondari non compromette l'efficacia di elementi costruttivi di compartimentazione e di impianti di protezione attiva;
- c) l'eventuale crollo degli elementi strutturali secondari non deve costituire un significativo rischio per gli occupanti e per i soccorritori.

Si è verificato pertanto che il crollo di tali elementi non determini un significativo rischio per gli occupanti ed i soccorritori e non comprometta la capacità portante di altre parti della struttura, per un tempo utile all'evacuazione di tutte le persone presenti, e comunque per almeno 30 minuti.

4.3.1 Relazione di Calcolo

Temperature di esposizione a 60'

Tipo verifica : s.l.u. secondo Eurocodici + NTC08 Unità di misura (se non specificate): N, mm, N/mm², deformazioni: %

Materiali Materiali Meccanici

Cls C35/45

Materiale: Cls C35/45. Normativa: Eurocodici + NTC08 - EN 1992-1-2 gen 1998.

La seguente tabella riassume le caratteristiche meccaniche.

fck [N/mm ²]	35
e _{c2} [%]	0.2
еси2 [%]	0.35
n	2

La seguente tabella riassume le proprietà meccaniche per la verifica "a freddo".

Q _C	1.5
MC	1.0

Documento	Relazione tecnica	Pagina	33 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

acc	0.85
f _{cd} [N/mm ²]	19.83
ec2 [%]	0.2
ecu2 [%]	0.35
n	2

La seguente tabella riassume le proprietà meccaniche per la verifica "a caldo".

acc	1
g c	1
aggregato	siliceo
kc	ENV 1992-1-2 gen 1998 3.2
f _{cd,q=20°} [N/mm	2] 35

Barre B450C

Materiale: Barre B450C. Normativa: Eurocodici + NTC08 - EN 1992-1-2 gen 1998.

La seguente tabella riassume le caratteristiche meccaniche.

fyk [N/mm ²]	450
E [N/mm ²]	206000
ramo	inclinato limitato
k	1.2
e _{ud} [%]	6.75

La seguente tabella riassume le proprietà meccaniche per la verifica "a freddo".

g _s	1.15	
fyd [N/mm²]	391.3	
e _y [%]	0.0019	

La seguente tabella riassume le proprietà meccaniche per la verifica "a caldo".

g s	1
ks	ENV 1992-1-2 gen 1998 3.3 - defo.>2%
f _{yd,q=20°} [N/mm ²]	450

Materiali Termici

P_CLSSiliceoEC2_1998

Materiale: P_CLSSiliceoEC2_1998. Calcestruzzo ad aggregato siliceo, secondo EC2 Parte 1-2 (Gennaio 1998). Le curve di calore specifico, conduttività termica e densità volumica sono tratte dalla norma UNI ENV 1992-1-2 01/1998 A.3.1. Si è considerata un'umidità in massa del 2%. La densità volumica è stata mantenuta costante oltre i 100°C.

Sezione

Descrizione: Sezione utente. Tipo sezione: G_tegolo_V

Aree distribuite

La sezione contiene in tutto 292 elementi. L'area totale di questi elementi vale 68343. mm². Il baricentro si trova nel punto (0, ;0,).

Gli elementi con caratteristiche strutturali sono 292. L'area totale di questi elementi vale 68343. mm². Il loro baricentro si trova nel punto (0. ;0.).

- Contorno 1

Tipo contorno: RETTANGOLARE Materiale meccanico: Cls C35/45

Materiale termico: P_CLSSiliceoEC2_1998

Questo contorno contiene 292 elementi. L'area totale di questi elementi vale 68343. mm². Il baricentro si trova nel punto (0. ;0.).

Vertice n.	Z [mm]	Y [mm]
1	-248.	94.
2	248.	94.
3	499.	-129.
4	499.	-165.
5	449.	-165.
6	225.	34.
7	-225.	34.
8	-449.	-165.
9	-499.	-165.
10	-499.	-129.

Pool Engineering St. Ass. P.IVA 08926970016

Documento	Relazione tecnica	Pagina	34 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

11	-248.	94.
Area [mm²]	68343.	

Aree concentrate

Vertice n.	Z [mm]	Y [mm]	d [mm]	Area [mm²]	Materiale
1	469.	-143.	12.	113.	Barre B450C
2	-469.	-143.	12.	113.	Barre B450C
3	236.	64.	12.	113.	Barre B450C
4	-236.	64.	12.	113.	Barre B450C
5	80.	64.	8.	50.	Barre B450C
6	-80.	64.	8.	50.	Barre B450C
7	390.	-72.	8.	50.	Barre B450C
8	324.	-13.	8.	50.	Barre B450C
9	-390.	-72.	8.	50.	Barre B450C
10	-324.	-13.	8.	50.	Barre B450C

Analisi termica

Tempo di esposizione: 45 min.

Tipi di esposizione								
Nome	Curva tempo-temperatura	Isolante	(eres.	ac[W/m² '	°K] f	Jnc,	g _{n,r}
Fuoco	Fuoco	nessuno	0. .	.56	25.	1.1		1.
Fuoco esterno	Fuoco esterno	nessuno	0. .	.56	25.	1.1		1.
Fuoco idrocarburi	Fuoco idrocarburi	nessuno	0. .	.56	50.	1.1		1.
Aria 20°	Aria 20°	nessuno	0. .	.56	9.	1.1		1.
Vuoti interni	Vuoti interni	nessuno	0. .	.56	9.	1.1		1.

Zone di esposizione							
Tipo	Cont. n.	Vert. n.	d1 [mm]	d2 [mm]			
Fuoco	1	4	0.	0.			
Fuoco	1	5	0.	0.			
Fuoco	1	6	0.	0.			
Fuoco	1	7	0.	0.			
Fuoco	1	8	0.	0.			

Analisi meccanica a freddo

Sforzi normali applicati nel punto (0.; 0.) (baricentro elementi strutturali)

Convenzioni: N + trazione; M_z + fib.inferiori tese; M_y + fib.sinistra tese; T_y + verso il basso; deformazione: $e = I + m_z y + m_y z$ [%].

Sollecitazione 1

Descrizione: Caso 1.1-A130-P9

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN^*m ; $My_d = 0$. kN^*m .

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): $= 0.; m_z = 0.; m_y = 0..$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)					
Area. n	.e [%]	s [N/mm ²]	Materiale		
1	0.	0.	Barre B450C		
2	0.	0.	Barre B450C		
3	0.	0.	Barre B450C		
4	0.	0.	Barre B450C		
5	0.	0.	Barre B450C		
6	0.	0.	Barre B450C		
7	0.	0.	Barre B450C		
8	0.	0.	Barre B450C		
9	0.	0.	Barre B450C		
10	0.	0.	Barre B450C		

Contorni (materiali strutturali della sezione)					
Cont.e elastiche	S				

tel 0124 450 535 - fax 0124 450 839 - info@poolsa.eu

POOL ENGINEERING ST. ASS. P.IVA 08926970016

Documento	Relazione tecnica	Pagina		35 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020	
Referenti		Revisione		
File	RT 02.0 Relazione Analisi Resistenza al Fuoco			

n.	[%] m _z [%/	cm] m _y [%/	cm] min [N	/mm²] coord	max [N/mm²]	coord
1	0. 0.	0.	0.	-499.; -165	0.	-499.; -165.

Sollecitazione 2

Descrizione: Caso 1.1-A60-P6

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 21.44$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .041; $m_z = -.00891$; $m_y = 0..$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)						
Area. n.	e [%]	s [N/mm²]	Materiale			
1	.168	347.1	Barre B450C			
2	.168	347.1	Barre B450C			
3	016	-33.1	Barre B450C			
4	016	-33.1	Barre B450C			
5	016	-33.1	Barre B450C			
6	016	-33.1	Barre B450C			
7	.106	218.	Barre B450C			
8	.053	109.7	Barre B450C			
9	.106	218.	Barre B450C			
10	.053	109.7	Barre B450C			

Contorni (materiali strutturali della sezione)							
Cont.e elastiche s							
n.	[%]	mz[%/cm]	my[%/cm]	min [N/mm ²]	coord	max [N/mm²]	coord
1	.0413	00891	0.	-7.58	-248.; 94.	0.	-499.; -165.

Verifica a pressoflessione soddisfatta.

Sollecitazione 3

Descrizione: Caso 1.1-A130-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 12.65$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .025; $m_z = -.00523$; $m_y = 0..$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)						
Area. n.	e [%]	s [N/mm²]	Materiale			
1	.099	204.3	Barre B450C			
2	.099	204.3	Barre B450C			
3	009	-18.8	Barre B450C			
4	009	-18.8	Barre B450C			
5	009	-18.8	Barre B450C			
6	009	-18.8	Barre B450C			
7	.062	128.5	Barre B450C			
8	.032	65.	Barre B450C			
9	.062	128.5	Barre B450C			
10	.032	65.	Barre B450C			

Contorni (materiali strutturali della sezione)							
Cont.e elastiche s							
n.	l[%]	mz[%/cm]	m _y [%/cm]	min [N/mm ²]	coord	max [N/mm²]	coord
1	.0245	00523	0.	-4.62	-248.; 94.	0.	-499.; -165.

Verifica a pressoflessione soddisfatta.

Sollecitazione 4

Descrizione: Caso 1.1-A60-P1

Pool Engineering St. Ass. P.IVA 08926970016

Documento	Relazione tecnica	Pagina	36 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 0$. kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): $= 0.; m_z = 0.; m_y = 0..$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)						
Area. n.e [%] s [N/mm²] Materiale						
Area. n.	e [%]	s [IN/mm²]	Materiale			
1	0.	0.	Barre B450C			
2	0.	0.	Barre B450C			
3	0.	0.	Barre B450C			
4	0.	0.	Barre B450C			
5	0.	0.	Barre B450C			
6	0.	0.	Barre B450C			
7	0.	0.	Barre B450C			
8	0.	0.	Barre B450C			
9	0.	0.	Barre B450C			
10	0.	0.	Barre B450C			

Contorni (materiali strutturali della sezione)								
Cont. e elastiche			S					
n.	[%]	mz[%/cm]	my[%/cm]	min	[N/mm ²]	coord	max [N/mm²]	coord
1	0.	0.	0.	0.		-499.; -165.	0.	-499.; -165.

Verifica a pressoflessione soddisfatta.

Sollecitazione 5

Descrizione: Cond.1-A130-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: N_d = 0. kN; Mz_d = 6.74 kN*m; Mz_d = 0. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .013; $m_z = -.00278$; $m_y = 0..$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)						
Area. n.	e [%]	s [N/mm²]	Materiale			
1	.053	108.7	Barre B450C			
2	.053	108.7	Barre B450C			
3	005	-9.8	Barre B450C			
4	005	-9.8	Barre B450C			
5	005	-9.8	Barre B450C			
6	005	-9.8	Barre B450C			
7	.033	68.5	Barre B450C			
8	.017	34.7	Barre B450C			
9	.033	68.5	Barre B450C			
10	.017	34.7	Barre B450C			

Contorni (materiali strutturali della sezione)							
Cont. e elastiche			S				
n.	[[%]	mz[%/cm]	my[%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	.0131	00278	0.	-2.51	-248.; 94.	0.	-499.; -165.

Verifica a pressoflessione soddisfatta.

Analisi meccanica a caldo

Tempo di esposizione: 45 min.

Sforzi normali applicati nel punto (0.; 0.) (baricentro elementi strutturali)

Convenzioni: N + trazione; M_z + fib.inferiori tese; M_y + fib.sinistra tese; T_y + verso il basso; deformazione: $e = I + m_z y + m_y z$ [%].

Sollecitazione 1

Descrizione: Caso 1.1-A130-P9

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 0$. kN*m; $My_d = 0$. kN*m.

POOL ENGINEERING St. Ass. P.IVA 08926970016

Documento	Relazione tecnica	Pagina	37 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): $= 0.; m_z = 0.; m_y = 0..$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)						
Area. n.	e [%]	s [N/mm²]	Materiale			
1	0.	0.	Barre B450C			
2	0.	0.	Barre B450C			
3	0.	0.	Barre B450C			
4	0.	0.	Barre B450C			
5	0.	0.	Barre B450C			
6	0.	0.	Barre B450C			
7	0.	0.	Barre B450C			
8	0.	0.	Barre B450C			
9	0.	0.	Barre B450C			
10	0.	0.	Barre B450C			

Conto	Contorni (materiali strutturali della sezione)							
Cont.e elastiche s								
n.	[%]	mz[%/cm]	my[%/cm]	min	[N/mm ²]	coord	max [N/mm²]	coord
1	0.	0.	0.	0.		-499.; -165.	0.	-499.; -165.

Verifica a pressoflessione soddisfatta.

Sollecitazione 2

Descrizione: Caso 1.1-A60-P6

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 21.44$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .159; $m_z = -.02394$; $m_y = 0..$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)						
Area. n.	e [%]	s [N/mm²]	Materiale			
1	.501	225.9	Barre B450C			
2	.501	225.9	Barre B450C			
3	.005	10.9	Barre B450C			
4	.005	10.9	Barre B450C			
5	.005	9.4	Barre B450C			
6	.005	9.4	Barre B450C			
7	.333	399.3	Barre B450C			
8	.192	349.4	Barre B450C			
9	.333	399.3	Barre B450C			
10	.192	349.4	Barre B450C			

Contorni (materiali strutturali della sezione)							
Cont.e elastiche			s				
n.	1[%]	mz[%/cm]	m _y [%/cm]	min [N/mm ²] coord	max [N/mm ²]	coord
1	.1594	02394	0.	-18.05	-248.; 94.	0.	-499.; -165.

Verifica a pressoflessione soddisfatta.

Sollecitazione 3

Descrizione: Caso 1.1-A130-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 12.65$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .049; $m_z = -.00803$; $m_y = 0..$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)

Pool Engineering St. Ass. P.IVA 08926970016

Documento	Relazione tecnica	Pagina	38 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

Area. n.	e [%]	s [N/mm²]	Materiale
1	.164	167.8	Barre B450C
2	.164	167.8	Barre B450C
3	003	-5.3	Barre B450C
4	003	-5.3	Barre B450C
5	003	-4.6	Barre B450C
6	003	-4.6	Barre B450C
7	.107	195.3	Barre B450C
8	.06	109.2	Barre B450C
9	.107	195.3	Barre B450C
10	.06	109.2	Barre B450C

Conto	Contorni (materiali strutturali della sezione)									
Cont. e elastiche s										
n.	[[%]	mz[%/cm]	my[%/cm]	min [N/mm²]	coord	max [N/mm ²]	coord	
1	.0491	00803	0.	-8.1		-248.; 94.	0.		-499.; -1	l 65.

Sollecitazione 4

Descrizione: Caso 1.1-A60-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN^*m ; $My_d = 0$. kN^*m .

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): $= 0.; m_z = 0.; m_y = 0..$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)					
Area. n.	e [%]	s [N/mm²]	Materiale		
1	0.	0.	Barre B450C		
2	0.	0.	Barre B450C		
3	0.	0.	Barre B450C		
4	0.	0.	Barre B450C		
5	0.	0.	Barre B450C		
6	0.	0.	Barre B450C		
7	0.	0.	Barre B450C		
8	0.	0.	Barre B450C		
9	0.	0.	Barre B450C		
10	0.	0.	Barre B450C		

Contorni (materiali strutturali della sezione)							
Cont. e elastiche s							
n.	[%]	mz[%/cm]	my[%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	0.	0.	0.	0.	-499.; -165.	0.	-499.; -165.

Verifica a pressoflessione soddisfatta.

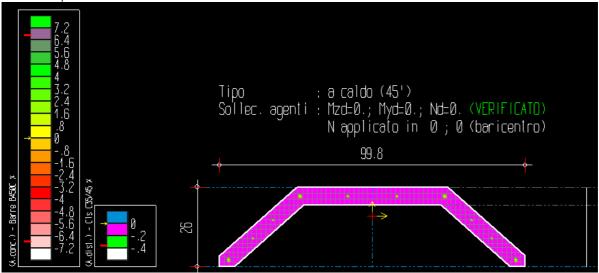
Sollecitazione 5

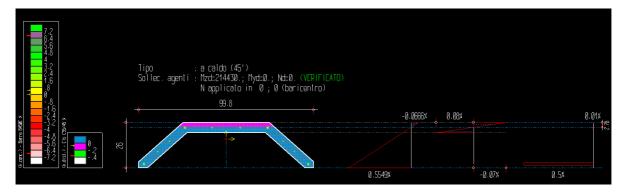
Descrizione: Cond.1-A130-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 6.74$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): = .026; $m_z = -.00427$; $m_y = 0..$

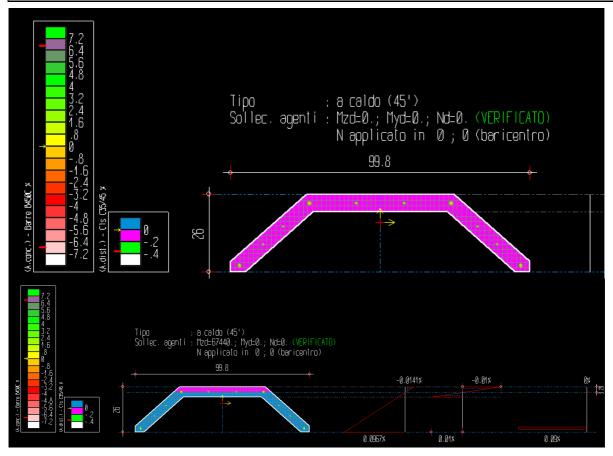
Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.


Aree concentrate (terri, cavi)						
Area. n.	e [%]	s [N/mm²]	Materiale			
1	.087	89.3	Barre B450C			
2	.087	89.3	Barre B450C			
3	001	-2.6	Barre B450C			
4	001	-2.6	Barre B450C			
5	001	-2.2	Barre B450C			



Documento	Relazione tecnica	Pagina	39 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

6	001	-2.2	Barre B450C
7	.057	104.1	Barre B450C
8	.032	58.3	Barre B450C
9	.057	104.1	Barre B450C
10	.032	58.3	Barre B450C


Contorni (materiali strutturali della sezione)								
Cont. e elastiche		s						
n.	l[%]	m _z [%/cm]	m _y [%/cm]	min	[N/mm ²]	coord	max [N/mm²]	coord
1	.0262	00427	0.	-4.41		-248.; 94.	0.	-499.; -165.

Documento	Relazione tecnica	Pagina	40 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

Il tegolo è in grado di garantire una Resistenza al Fuoco di almeno 45 minuti.

CASO2 – Tegolo + controsoffitto e lana di roccia

Al fine di armonizzare i requisiti di resistenza al fuoco della struttura, sia di quella portante che di quella secondaria di copertura, si è provveduto a verificare la Resistenza al Fuoco dei tegoli di copertura a seguito di installazione di controsoffitto in lana di roccia. A maggior tutela non si è considerato il plenum di aria presente tra il controsoffitto e l'elemento tegolo ma si è ipotizzata l'installazione del controsoffitto a raso sull'elemento di copertura.

Nello specifico il controsoffitto previsto è costituito da pannelli Rockfon Ekla, pannelli acustici in lana di roccia con un velo verniciato in bianco sulla faccia a vista e con un controvelo sulla faccia superiore delle dimensioni modulari di 600x600x20 mm del peso di 2,2 kg/mq.

Dal punto di vista della protezione incendio i pannelli sono costituiti essenzialmente da lana di roccia, materiale incombustibile il cui punto di fusione supera i 1000°C. La reazione al fuoco del pannello e pari all'euroclasse A1 secondo la norma EN 13501-1.

Nella porzione superiore del pannello sarà poi posato un ulteriore strato in lana di roccia dello spessore di 160mm.

Documento	Relazione tecnica	Pagina	41 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

GAMMA

Bordi	Dimensioni modulari (mm)	Peso (kg/mq)	Sistemi di installazione
A15	600 x 600 x 15	2,0	T15
	- 1200 x 600 x 15	2,0	T15
	600 x 600 x 20	2,2	T15
-	675 x 675 x 20	2,2	T15
	1200 x 600 x 20	2,2	T15
A24	600 x 600 x 15	2,0	T24
	- 1200 x 600 x 15	2,0	T24
	600 x 600 x 20	2,2	T24
	675 x 675 x 20	2,2	T24
	1200 x 600 x 20	2,2	T24
	1500 x 600 x 20	2,2	T24
	1800 x 600 x 20	2,2	T24
	2100 x 600 x 20	2,2	T24
	2400 x 600 x 20	2,2	T24

ISOLAMENTO ACUSTICO

Le caratteristiche di isolamento acustico laterale di Ekla sono state misurate in laboratorio, con il seguente risultato: $D_{n,f,w}\left(C;C_{tr}\right)=27\left(-1;-5\right)$ dB. L'isolamento acustico è stato misurato secondo la norma ISO 10848-2. Oltre che dalla qualità di giunzioni e collegamenti, l'isolamento acustico globale di un edificio dipende da molteplici elementi di costruzione, come le pareti e i soffitti.

ASSORBIMENTO ACUSTICO

L'assorbimento acustico è stato misurato secondo la norma ISO 354. I diversi dati relativi all'assorbimento acustico ($\alpha_{\rm pr}$, $\alpha_{\rm w}$ e classe di assorbimento) sono stati calcolati nel rispetto della norma ISO 11654.

Documento	Relazione tecnica	Pagina		42 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020	
Referenti		Revisione		
File	RT 02.0 Relazione Analisi Resistenza al Fuoco			

PROTEZIONE INCENDIO

Generalità: I pannelli per controsoffitti Rockfon sono essenzialmente composti da lana di roccia. La lana di roccia è un materiale incombustibile il cui punto di fusione supera i 1000° C.

Reazione al fuoco: Euroclasse A1 secondo la norma EN 13501-1. Resistenza al fuoco:

	Dimensioni		
Risultato	(mm)	Bordo	di prova N
REI 120	600 x 600 x 20	Α	214763/2872FR
REI 180	600 x 600 x 20	E	172458/2520RF

Vedere il rapporto di prova per dimensioni e posa in opera

RESISTENZA ALL'UMIDITÀ E ALLA FLESSIONE

A livello dimensionale, Ekla è stabile anche in condizioni di umidità che possono arrivare al 100%. Può essere messo in opera a temperature comprese tra 0° C e 40° C, senza che sia necessaria alcuna acclimatazione.

Ekla è stato testato 1/C/ON secondo la norma NF EN 13964. Tuttavia, alcuni formati dei moduli (larghezza superiore a 700 mm) sono classificati 2/C/ON. (Prova CSTB secondo la norma NF EN 13964 in condizioni di 95(+/-5)% UR, 20(+/-2)°C.)

RIFLESSIONE DELLA LUCE

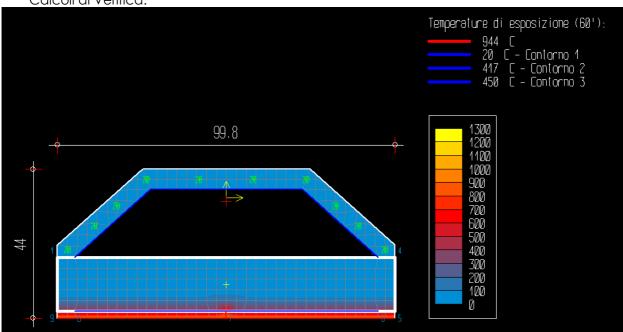
Bianco: 86 % di riflessione della luce secondo la norma ISO 7724-2.

CONDUTTIVITÀ TERMICA

I prodotti di spessore superiore o uguale a 30 mm sono stati misurati secondo la norma EN 12667 e hanno ottenuto il seguente valore: $\lambda_D = 37$ mW/mK.

Resistenza termica: 15 mm - R = 0,40 mq·K/W. 20 mm - R = 0,50 mq·K/W.

IGIENE


La lana di roccia non contiene alcun elemento nutritivo e non favorisce lo sviluppo di microrganismi.

MANUTENZIONE ORDINARIA

La superficie può essere pulita con un aspiratore dotato di spazzola morbida.

Calcoli di Verifica:

Temperature di esposizione a 60'

Tipo verifica: s.l.u. secondo Eurocodici + NTC08

Unità di misura (se non specificate): N, mm, N/mm², deformazioni: %

Documento	Relazione tecnica	Pagina	43 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

Materiali

Materiali Meccanici

Cls C35/45

Materiale: Cls C35/45. Normativa: Eurocodici + NTC08 - EN 1992-1-2 gen 1998.

La seguente tabella riassume le caratteristiche meccaniche.

fck [N/mm ²]	35
e _{c2} [%]	0.2
e _{cu2} [%]	0.35
n	2

La seguente tabella riassume le proprietà meccaniche per la verifica "a freddo".

gс	1.5
acc	0.85
f _{cd} [N/mm ²]	19.83
e _{c2} [%]	0.2
e _{cu2} [%]	0.35
n	2

La seguente tabella riassume le proprietà meccaniche per la verifica "a caldo".

acc	1
g _c	1
aggregato	siliceo
kc	ENV 1992-1-2 gen 1998 3.2
f _{cd,q=20°} [N/mm ²]	35

Non strutturale: Isolante

Materiale: Non strutturale: Isolante. Normativa: nessuna. Questo materiale è privo di proprietà meccaniche.

Barre B450C

Materiale: Barre B450C. Normativa: Eurocodici + NTC08 - EN 1992-1-2 gen 1998.

La seguente tabella riassume le caratteristiche meccaniche.

f _{yk} [N/mm ²] 450		
E [N/mm ²]	206000	
ramo	inclinato limitato	
k	1.2	
eud [%]	6.75	

La seguente tabella riassume le proprietà meccaniche per la verifica "a freddo".

gs		1.15
f_{yd}	[N/mm ²]	391.3
еу	[%]	0.0019

La seguente tabella riassume le proprietà meccaniche per la verifica "a caldo".

g s	1
k s	ENV 1992-1-2 gen 1998 3.3 - defo.>2%
$f_{yd,q=20^{\circ}}$ [N/mm ²]	450

Materiali Termici

P CLSSiliceoEC2 1998

Materiale: P_CLSSiliceoEC2_1998. Calcestruzzo ad aggregato siliceo, secondo EC2 Parte 1-2 (Gennaio 1998).

Le curve di calore specifico, conduttività termica e densità volumica sono tratte dalla norma UNI ENV 1992-1-2 01/1998 A.3.1. Si è considerata un'umidità in massa del 2%. La densità volumica è stata mantenuta costante oltre i 100°C.

U_Utente

Materiale: U_Utente. Descrizione del materiale utente.

La seguente tabella descrive la variazione della conduttività termica con la temperatura.

t [°C]	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380
I [W/m	0.7841	0.7685	0.7532	0.7381	0.7233	0.7088	0.6945	0.6805	0.6668	0.6533	0.6401	0.6272	0.6145	0.6021	0.59	0.5781	0.5665	0.5552	0.5441

Vicolo Cugiano, 4 - 10090 San Giorgio Can.se (To)

Documento	Relazione tecnica	Pagina	44 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

°K]																			
400	420	440	460	480	500	520	540	560	580	600	620	640	660	680	700	720	740	760	780
0.5333	0.5228	0.5125	0.5025	0.4928	0.483	30.47	41 0.46	52 0.45	65 0.44	81 0.44	0.4321	0.4245	0.4172	0.4101	0.4033	0.3968	0.3905	0.3845	0.3788
800	820	840	860	880	900	920	940	960	980	1000	1020	1040	1060	1080	1100	1120	1140	1160	1180
0.3733	0.3681	0.3632	0.3585	0.3541	0.35	0.3461	0.3425	0.3392	0.3361	0.3333	0.3308	0.3285	0.3265	0.3248	0.3233	0.3221	0.3212	0.3205	0.3201

1200 0.32

La seguente tabella descrive la variazione del calore specifico con la temperatura.

-0.00	900.					· · · ·														
t [°C] 2	20	40	60	80	100	120	14	10	150	180	200	220	240	260	280	300	320	340	360	380
С																				
	913.22	926.22	939	951.5	963.8	9 1328	.33 1 6	592.78	1875	1363.3	3 1022.2	22 1033.	22 104	4 1054.5	56 1064.	89 107	5 1084.8	39 1094.	56 110	4 1113.2
°K]																				
400	420	440	40	50	480 5	00	520	540) 560	0 5	30 d	620) 6	40 6	680 680) 7(00	720 740) 7	60 7
1122.2	2 1131	1139.	56 1	147.89	1156	163.89	1171	.56 117	79 1 18	86.22 1	193.22	200 120	6.56 1	212.89	219 122	24.89 12	230.56	1236 124	11.22 1	246.22 1
800	820	840	0 8	50	880	900	920	940)	960 9	30	000	1020 1	040 1	060	1080 1	100	1120	1140 1	160 1
1255.5	6 1259	2.89 12	64 12	267.89	1271.5	6 1275	1278	.22 128	31.22	1284 1	286.56	288.89	1291 1:	292.89 1	294.56	1296 12	297.22	1298.22	1299 13	299.56 1
1000																				

1200

La seguente tabella descrive la variazione della densità volumica con la temperatura.

t	[°C]	20	100	101	1200
r	[Kg/m ³]	2300	2300	2300	2300

Sezione

Descrizione: Tegolo con Pannello controsoffitto

Tipo sezione: GENERICO

Aree distribuite

La sezione contiene in tutto 296 elementi. L'area totale di questi elementi vale 247995. mm². Il baricentro si trova nel punto (0. ;-195.).

Gli elementi con caratteristiche strutturali sono 90. L'area totale di questi elementi vale 68344. mm². Il loro baricentro si trova nel punto (0. ;-10.).

- Contorno 1

Tipo contorno: GENERICO

Materiale meccanico: Cls C35/45

Materiale termico: P CLSSiliceoEC2 1998

Questo contorno contiene 90 elementi. L'area totale di questi elementi vale 68344. mm². Il baricentro si trova nel punto (0. ;-10.).

Vertice n.	Z [mm]	Y [mm]
1	-248.	84.
2	248.	84.
3	499.	-139.
4	499.	-175.
5	449.	-175.
6	225.	24.
7	-225.	24.
8	-449.	-175.
9	-499.	-175.
10	-499.	-139.
11	-248.	84.
Area [mm²]	68344.	

- Contorno 2

Tipo contorno: GENERICO

Materiale meccanico: Non strutturale: Isolante

Materiale termico: U_Utente

Questo contorno contiene 17 elementi. L'area totale di questi elementi vale 9981. mm². Il baricentro si trova nel punto (250. ;-345.).

Vertice n. Z [mm] Y [mm]

Lo studio opera con procedure conformi ala norma ISO 9001:2008

POOL ENGINEERING ST. ASS. P.IVA 08926970016

Documento	Relazione tecnica	Pagina	45 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

1	0.	-335.
2	50.	-335.
3	449.	-335.
4	499.	-335.
5	499.	-355.
6	0.	-355.
7	0.	-335.
Area [mm²]	9981.	

- Contorno 3

Tipo contorno: GENERICO

Materiale meccanico: Non strutturale: Isolante

Materiale termico: U_Utente

Questo contorno contiene 18 elementi. L'area totale di questi elementi vale 9981. mm². Il

baricentro si trova nel punto (-250. ;-345.).

Vertice n.	Z [mm]	Y [mm]
1	-499.	-335.
2	-449.	-335.
3	-50.	-335.
4	0.	-335.
5	0.	-355.
6	-499.	-355.
7	-499.	-335.
Area [mm²]	9981.	

- Contorno 4

Tipo contorno: GENERICO

Materiale meccanico: Non strutturale: Isolante

Materiale termico: U_Utente

Questo contorno contiene 171 elementi. L'area totale di questi elementi vale 159690. mm². Il

baricentro si trova nel punto (0. ;-255.).

Vertice n.	Z [mm]	Y [mm]
1	-499.	-175.
2	-449.	-175.
3	449.	-175.
4	499.	-175.
5	499.	-335.
6	449.	-335.
7	0.	-335.
8	-449.	-335.
9	-499.	-335.
10	-499.	-175.
Area [mm ²]	159690	

Aree concentrate

Vertice n.	Z [mm]	Y [mm]	d [mm]	Area [mm²]	Materiale
1	469.	-153.	12.	113.	Barre B450C
2	-469.	-153.	12.	113.	Barre B450C
3	236.	54.	12.	113.	Barre B450C
4	-236.	54.	12.	113.	Barre B450C
5	80.	54.	8.	50.	Barre B450C
6	-80.	54.	8.	50.	Barre B450C
7	390.	-82.	8.	50.	Barre B450C
8	324.	-23.	8.	50.	Barre B450C
9	-390.	-82.	8.	50.	Barre B450C

Documento	Relazione tecnica	Pagina	46 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

10	-324	-23	8	50	Barre B450C
10	02 1.	20.	U .	00.	Dane Dicco

Analisi termica

Tempo di esposizione: 60 min.

Tipi di esposizione							
Nome	Curva tempo-temperatura	Isolante	e _{re}	ac[W/m ² °K]] f ç	gnc, gn,	
Fuoco	Fuoco	nessuno	056	25.	1.1	1.	
Fuoco esterno	Fuoco esterno	nessuno	056	25.	1.1	1.	
Fuoco idrocarbur	Fuoco idrocarburi	nessuno	056	50.	1.1	1.	
Aria 20°	Aria 20°	nessuno	056	9.	1.1	1.	
Vuoti interni	Vuoti interni	nessuno	056	9.	1.1	1.	

Zone di esposizione						
Tipo	Cont. n.	Vert. n.	d1 [mm]	d2 [mm]		
Vuoti interni	1	5	0.	0.		
Vuoti interni	1	6	0.	0.		
Vuoti interni	1	7	0.	0.		
Vuoti interni	2	1	0.	0.		
Vuoti interni	2	2	0.	0.		
Fuoco	2	5	0.	0.		
Fuoco	2	6	0.	0.		
Vuoti interni	3	2	0.	0.		
Vuoti interni	3	3	0.	0.		
Fuoco	3	4	0.	0.		
Fuoco	3	5	0.	0.		
	-	-	1-1			

Analisi meccanica a freddo

Sforzi normali applicati nel punto (0.; -10.) (baricentro elementi strutturali)

Convenzioni: N + trazione; M_z + fib.inferiori tese; M_y + fib.sinistra tese; T_y + verso il basso; deformazione: $e = I + m_z y + m_y z$ [%].

Sollecitazione 1

Descrizione: Caso 1.1-A130-P9

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 0$. kN^*m ; $My_d = 0$. kN^*m .

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): l=0.; $m_z=0.$; $m_y=0.$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)						
Area. n.	e [%]	s [N/mm²]	Materiale			
1	0.	0.	Barre B450C			
2	0.	0.	Barre B450C			
3	0.	0.	Barre B450C			
4	0.	0.	Barre B450C			
5	0.	0.	Barre B450C			
6	0.	0.	Barre B450C			
7	0.	0.	Barre B450C			
8	0.	0.	Barre B450C			
9	0.	0.	Barre B450C			
10	0.	0.	Barre B450C			

Contorni (materiali strutturali della sezione)							
Cont.	e el	astiche		S			
n.	l[%]	mz[%/cm]	my[%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	0.	0.	0.	0.	248.; 84.	0.	-499.; -9.

Vicolo Cugiano, 4 - 10090 San Giorgio Can se (Ta

Documento	Relazione tecnica	Pagina		47 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020	
Referenti		Revisione		
File	RT 02.0 Relazione Analisi Resistenza al Fuoco			

2	0.	0.	0.	0.	499.; -335. 0.	29.; -355.
3	0.	0.	0.	0.	-499.; -335.0.	-470.; -355.
4	0.	0.	0.	0.	499.; -175. 0.	-499.; -175.

Sollecitazione 2

Descrizione: Caso 1.1-A60-P6

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 21.44 \ kN^*m$; $My_d = 0$. kN^*m .

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): l=.032; $m_z=-.00891$; $m_v=0$..

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)							
Area. n.	e [%]	s [N/mm²]	Materiale				
1	.168	347.1	Barre B450C				
2	.168	347.1	Barre B450C				
3	016	-33.1	Barre B450C				
4	016	-33.1	Barre B450C				
5	016	-33.1	Barre B450C				
6	016	-33.1	Barre B450C				
7	.106	218.	Barre B450C				
8	.053	109.7	Barre B450C				
9	.106	218.	Barre B450C				
10	.053	109.7	Barre B450C				

Contorni (materiali strutturali della sezione)								
Cont.	Cont.e elastiche			S	S			
n.	l[%]	mz[%/cm]	my[%/cm]	min [N/mm²]	coord	max [N/mm²]	coord	
1	.0324	00891	0.	-7.58	248.; 84.	0.	-499.; -9.	
2	.0324	00891	0.	0.	499.; -335.	0.	29.; -355.	
3	.0324	00891	0.	0.	-499.; -335.	0.	-470.; -355.	
4	.0324	00891	0.	0.	499.; -175.	0.	-499.; -175.	

Verifica a pressoflessione soddisfatta.

Sollecitazione 3

Descrizione: Caso 1.1-A130-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 12.65$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): l=.019; $m_z=-.00523$; $m_y=0$..

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)							
Area. n.	e [%]	s [N/mm²]	Materiale				
1	.099	204.3	Barre B450C				
2	.099	204.3	Barre B450C				
3	009	-18.8	Barre B450C				
4	009	-18.8	Barre B450C				
5	009	-18.8	Barre B450C				
6	009	-18.8	Barre B450C				
7	.062	128.5	Barre B450C				
8	.032	65.	Barre B450C				
9	.062	128.5	Barre B450C				

colo Cugiano, 4 - 10090 San Giorgio Can se (To

Documento	Relazione tecnica	Pagina	48 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

10	.03	2 65.	Barre B4	150C			
Conto	Contorni (materiali strutturali della sezione)						
Cont.	e ela:	stiche		S			
n.	l[%]	mz[%/cm]	my[%/cm]	min [N/mm ²]	coord	max [N/mm²]	coord
1	.0193	00523	0.	-4.62	248.; 84.	0.	-499.; -9.
2	.0193	00523	0.	0.	499.; -335.	0.	29.; -355.
3	.0193	00523	0.	0.	-499.; -335.	0.	-470.; -355.
4	.0193	00523	0.	0.	499.; -175.	0.	-499.; -175.

Sollecitazione 4

Descrizione: Caso 1.1-A60-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 0$. kN^*m ; $My_d = 0$. kN^*m .

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): l=0.; $m_z=0$.; $m_z=0$..

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)					
Area. n.	e [%]	s [N/mm²]	Materiale		
1	0.	0.	Barre B450C		
2	0.	0.	Barre B450C		
3	0.	0.	Barre B450C		
4	0.	0.	Barre B450C		
5	0.	0.	Barre B450C		
6	0.	0.	Barre B450C		
7	0.	0.	Barre B450C		
8	0.	0.	Barre B450C		
9	0.	0.	Barre B450C		
10	0.	0.	Barre B450C		

Conto	Contorni (materiali strutturali della sezione)						
Cont. e elastiche			S				
n.	[%]	mz[%/cm]	my[%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	0.	0.	0.	0.	248.; 84.	0.	-499.; -9.
2	0.	0.	0.	0.	499.; -335.	0.	29.; -355.
3	0.	0.	0.	0.	-499.; -335.	0.	-470.; -355.
4	0.	0.	0.	0.	499.; -175.	0.	-499.; -175.

Verifica a pressoflessione soddisfatta.

Sollecitazione 5

Descrizione: Cond.1-A130-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 6.74$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): |= .01; $m_z = -.00278$; $m_v = 0..$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)					
Area. n.	e [%]	s [N/mm²]	Materiale		
1	.053	108.7	Barre B450C		
2	.053	108.7	Barre B450C		
3	005	-9.8	Barre B450C		

Documento	Relazione tecnica	Pagina	49 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

4	005	-9.8	Barre B450C
5	005	-9.8	Barre B450C
6	005	-9.8	Barre B450C
7	.033	68.5	Barre B450C
8	.017	34.7	Barre B450C
9	.033	68.5	Barre B450C
10	.017	34.7	Barre B450C

Conto	Contorni (materiali strutturali della sezione)						
Cont.e elastiche		3					
n.	l[%]	mz[%/cm]	my[%/cm]	min [N/mm ²]	coord	max [N/mm²]	coord
1	.0103	00278	0.	-2.51	248.; 84.	0.	-499.; -9.
2	.0103	00278	0.	0.	499.; -335.	0.	29.; -355.
3	.0103	00278	0.	0.	-499.; -335.	0.	-470.; -355.
4	.0103	00278	0.	0.	499.; -175.	0.	-499.; -175.

Analisi meccanica a caldo

Tempo di esposizione: 60 min.

Sforzi normali applicati nel punto (0.; -10.) (baricentro elementi strutturali)

Convenzioni: N + trazione; M_z + fib.inferiori tese; M_y + fib.sinistra tese; T_y + verso il basso;

deformazione: $e = I + m_z y + m_y z$ [%].

Sollecitazione 1

Descrizione: Caso 1.1-A130-P9

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 0$. kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): l=0.; $m_z=0.$; $m_z=0.$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree concentrate (ferri, cavi)				
		s [N/mm²]		
1		0.	Barre B450C	
2	0.	0.	Barre B450C	
3	0.	0.	Barre B450C	
4	0.	0.	Barre B450C	
5	0.	0.	Barre B450C	
6	0.	0.	Barre B450C	
7	0.	0.	Barre B450C	
8	0.	0.	Barre B450C	
9	0.	0.	Barre B450C	
10	0.	0.	Barre B450C	

Contorni (materiali strutturali della sezione)								
Cont. e elastiche			S					
n.	[1[%]	mz[%/cm]	my[%/cm]	min [N/m	m ²]	coord	max [N/mm²]	coord
1	0.	0.	0.	0.		248.; 84.	0.	-499.; -9.
2	0.	0.	0.	0.		499.; -335.	0.	29.; -355.
3	0.	0.	0.	0.		-499.; -335.	0.	-470.; -355.
4	0.	0.	0.	0.		499.; -175.	0.	-499.; -175.

Verifica a pressoflessione soddisfatta.

Sollecitazione 2

Descrizione: Caso 1.1-A60-P6

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 21.44$ kN*m; $My_d = 0$. kN*m.

POOL ENGINEERING St. Ass. P.IVA 08926970016

Documento	Relazione tecnica	Pagina	50 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): I=.038; I=.038

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

	·				
Aree concentrate (ferri, cavi)					
e [%]	s [N/mm²]	Materiale			
.163	336.7	Barre B450C			
.163	336.7	Barre B450C			
007	-14.2	Barre B450C			
007	-14.2	Barre B450C			
007	-14.2	Barre B450C			
007	-14.2	Barre B450C			
.106	217.5	Barre B450C			
.057	117.6	Barre B450C			
.106	217.5	Barre B450C			
.057	117.6	Barre B450C			
	e [%] .163 .163 007 007 007 007 .106 .057	ncentrate (ferri, e [%] s [N/mm²] .163			

Conto	Contorni (materiali strutturali della sezione)						
Cont.e elastiche			\$				
n.	I[%]	mz[%/cm]	my[%/cm]	min [N/mm ²]	coord	max [N/mm²]	coord
1	.0378	00822	0.	-10.17	248.; 84.	0.	-499.; -9.
2	.0378	00822	0.	0.	499.; -335.	0.	29.; -355.
3	.0378	00822	0.	0.	-499.; -335.	0.	-470.; -355.
4	.0378	00822	0.	0.	499.; -175.	0.	-499.; -175.

Verifica a pressoflessione soddisfatta.

Sollecitazione 3

Descrizione: Caso 1.1-A130-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 12.65$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): I=.022; $M_z=-.00483$; $M_y=0..$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree co	Aree concentrate (ferri, cavi)					
Area. n.	e [%]	s [N/mm²]	Materiale			
1	.096	198.3	Barre B450C			
2	.096	198.3	Barre B450C			
3	004	-8.	Barre B450C			
4	004	-8.	Barre B450C			
5	004	-8.	Barre B450C			
6	004	-8.	Barre B450C			
7	.062	128.3	Barre B450C			
8	.034	69.5	Barre B450C			
9	.062	128.3	Barre B450C			
10	.034	69.5	Barre B450C			

Conto	Contorni (materiali strutturali della sezione)						
Cont.e elastiche			S				
n.	l[%]	mz[%/cm]	my[%/cm]	min [N/mm²]	coord	max [N/mm²]	coord
1	.0224	00483	0.	-6.14	248.; 84.	0.	-499.; -9.
2	.0224	00483	0.	0.	499.; -335.	0.	29.; -355.
3	.0224	00483	0.	0.	-499.; -335.	0.	-470.; -355.

Pool Engineering St. Ass. P.IVA 08926970016

Documento	Relazione tecnica	Pagina	51 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

1	.022400483	n	n	499.; -175.	n	-499.; -175.
7	.0227 .00700	0.	ο.	7//., 1/0.	υ.	7//., 1/0.

Sollecitazione 4

Descrizione: Caso 1.1-A60-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 0$. kN^*m ; $My_d = 0$. kN^*m .

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): l=0.; $m_z=0.$; $m_z=0.$.

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree co	Aree concentrate (ferri, cavi)				
Area. n.	e [%]	s [N/mm²]	Materiale		
1	0.	0.	Barre B450C		
2	0.	0.	Barre B450C		
3	0.	0.	Barre B450C		
4	0.	0.	Barre B450C		
5	0.	0.	Barre B450C		
6	0.	0.	Barre B450C		
7	0.	0.	Barre B450C		
8	0.	0.	Barre B450C		
9	0.	0.	Barre B450C		
10	0.	0.	Barre B450C		

Conto	Contorni (materiali strutturali della sezione)						
Cont. e elastiche			S	S			
n.	[[%]	m _z [%/cm]	m _y [%/cm]	min [N/mm ²]	coord	max [N/mm²]	coord
1	0.	0.	0.	0.	248.; 84.	0.	-499.; -9.
2	0.	0.	0.	0.	499.; -335.	0.	29.; -355.
3	0.	0.	0.	0.	-499.; -335.	0.	-470.; -355.
4	0.	0.	0.	0.	499.; -175.	0.	-499.; -175.

Verifica a pressoflessione soddisfatta.

Sollecitazione 5

Descrizione: Cond.1-A130-P1

La terna di sollecitazioni agenti di calcolo, per la verifica di pressoflessione, è la seguente: $N_d = 0$. kN; $Mz_d = 6.74$ kN*m; $My_d = 0$. kN*m.

Il calcolo della deformazione della sezione, conseguente alle sollecitazioni applicate, ha raggiunto la convergenza. La deformazione della sezione è espressa da un piano definito dai seguenti valori (in %): l=.012; $m_z=-.00257$; $m_y=0..$

Le seguenti tabelle riassumono le tensioni massime in ciascun contorno della sezione e nelle aree concentrate (ferri, cavi). Per ciascun punto di calcolo sono indicate anche le deformazioni.

Aree co	Aree concentrate (ferri, cavi)					
Area. n.	e [%]	s [N/mm²]	Materiale			
1	.051	105.6	Barre B450C			
2	.051	105.6	Barre B450C			
3	002	-4.1	Barre B450C			
4	002	-4.1	Barre B450C			
5	002	-4.1	Barre B450C			
6	002	-4.1	Barre B450C			
7	.033	68.4	Barre B450C			
8	.018	37.1	Barre B450C			
9	.033	68.4	Barre B450C			
10	.018	37.1	Barre B450C			

Documento	Relazione tecnica	Pagina	52 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

Conto	Contorni (materiali strutturali della sezione)						
Cont. e elastiche			S				
n.	l[%]	mz[%/cm]	m _y [%/cm]	min [N/mm ²]	coord	max [N/mm²]	coord
1	.012	00257	0.	-3.32	248.; 84.	0.	-499.; -9.
2	.012	00257	0.	0.	499.; -335.	0.	29.; -355.
3	.012	00257	0.	0.	-499.; -335.	0.	-470.; -355.
4	.012	00257	0.	0.	499.; -175.	0.	-499.; -175.

Il tegolo, a seguito dell'applicazione di controsoffitto, è in grado di garantire una Resistenza al Fuoco di almeno 60 minuti.

Documento	Relazione tecnica	Pagina		53 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020	
Referenti		Revisione		
File	RT 02.0 Relazione Analisi Resistenza al Fuoco			

5 DETERMINAZIONE DEI TEMPI DI EVACUAZIONE

Date la condizioni del salone polivalente, affollamento, distribuzione e dimensione delle uscite di sicurezza, si è provveduto ad effettuare una stima dei tempi di evacuazione nel caso di maggior affollamento.

Il D.M. 19.08.1996 prescrive un affollamento massimo nei locali di cui al punto 75 DPR 151/11, ovvero locali destinati a trattenimenti ed attrazioni varie, aree ubicate in esercizi pubblici ed attrezzate per accogliere spettacoli, pari a 0,7 persone/mq.

Nel caso invece di sale da ballo e discoteche (valori considerati per le serate danzanti) è consentito un affollamento massimo di 1,2 persone/mq.

Di conseguenza:

Superficie: 775mg

Affollamento massimo: 0,7 persone/ma

Tot. 542 persone

Lunghezza massima dei percorsi di esodo: 17metri VERIFICA POSITIVA (lungh. massima 50m)

Uscite di sicurezza:

Id. Porta	Larghezza	N° moduli
1	4,80 x 4,50 m	4
2	1,80 x 2,10 m	3
3	1,20 x 2,10 m	2
4	1,20 x 2,10 m	2
Tot.		11

Capacità di deflusso: 50

Verifica esodo: 542 /50 = 11 moduli VERIFICA POSITIVA

Si conclude che:

- considerato che il numero di moduli risulta sufficiente per garantire un'evacuazione efficace anche in caso di affoliamento massimo;
- considerata la lunghezza massima di esodo pari a 17m;
- considerato che il D.M. 10.03.1998 stima un tempo di evacuazione pari ad 1minuto per lunghezza di evacuazione comprese tra i 15÷30m;
- considerata la presenza di un impianto di rilevazione fumi attivo sia al di sotto che sopra il controsoffitto conforme alla norma UNI 9795 in grado di garantire immediatamente gli occupanti del pericolo;
- considerati eventuali "ritardi" dovuti all'elevato affollamento ed alla presenza di persone che non hanno familiarità con i luoghi;
- considerate le prove di evacuazione già effettuate negli anni passati;

Si stima un tempo di evacuazione massimo pari a 5 minuti.

Documento	Relazione tecnica	Pagina	54 di 54
Committente	Comune di Mazzè	Data emissione	20.03.2020
Referenti		Revisione	
File	RT 02.0 Relazione Analisi Resistenza al Fuoco		

6 CONCLUSIONI

• Data la resistenza al fuoco degli elementi strutturali portanti e secondari, così come determinata nei capitoli precedenti:

Elemento	Tipologia	Resistenza al Fuoco
Pilastro	Struttura portante	R60
Trave	Struttura portante	R60
Tegolo	Struttura secondaria	R45
Tegolo + controsoffitto Rockfon Ekla	Struttura secondaria	R60

Dato il tempo di evacuazione stimato alla pagina precedente pari a:

Tempo di Evacuazione Massimo	5 minuti

 Vista la presenza di elementi di consolidamento strutturale in acciaio non protetti dall'azione del fuoco. In considerazione che tali elementi hanno funzione portante solo in caso di evento sismico, per il quale si può ragionevolmente escludere la contemporaneità con un incendio in termini probabilistici (così come condiviso con i funzionari del Comando dei Vigili del Fuoco di Torino);

si ritiene che le strutture portanti e secondarie di cui sopra siano sufficienti a garantire le prestazioni richieste dal D.M. 19 agosto 1996 e che pertanto non sia necessario installare un controsoffitto che garantisca la prestazione R ma che garantisca semplicemente una **Classe di Reazione al fuoco minima pari a 1** (classe italiana).

Tale struttura inoltre, essendo costituita da materiale incombustibile (lana di roccia), contribuisce implicitamente anche alla protezione dagli effetti dell'incendio di quegli elementi di consolidamento strutturale in acciaio di cui sopra.

Pertanto si suggerisce all'amministrazione di utilizzare i pannelli Rockfon Ekla per la realizzazione del controsoffitto ed uno strato di lana di roccia Plafolaine Feu Rockfon dello spessore minimo di 16cm, così come da progetto, garantendo, oltre che un'idonea prestazione ai fini della prevenzione incendi, anche una buona resa estetica, un'ottima prestazione acustica ed un miglioramento dal punto di vista del risparmio energetico.

Si allega alla presente il Certificato di Resistenza al Fuoco CERT_REI relativa ai pilastri ed alle travi orizzontali.

Il Certificato di Resistenza al Fuoco CERT_REI relativo ai tegoli di copertura sarà prodotto al termine dell'esecuzione dei lavori in progetto.